# Copyright 2023 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for resnet.""" # Import libraries from absl.testing import parameterized import tensorflow as tf, tf_keras from official.vision.modeling.layers import nn_blocks_3d class NNBlocksTest(parameterized.TestCase, tf.test.TestCase): @parameterized.parameters( (nn_blocks_3d.BottleneckBlock3D, 1, 1, 2, True, 0.2, 0.1), (nn_blocks_3d.BottleneckBlock3D, 3, 2, 1, False, 0.0, 0.0), ) def test_bottleneck_block_creation(self, block_fn, temporal_kernel_size, temporal_strides, spatial_strides, use_self_gating, se_ratio, stochastic_depth): temporal_size = 16 spatial_size = 128 filters = 256 inputs = tf_keras.Input( shape=(temporal_size, spatial_size, spatial_size, filters * 4), batch_size=1) block = block_fn( filters=filters, temporal_kernel_size=temporal_kernel_size, temporal_strides=temporal_strides, spatial_strides=spatial_strides, use_self_gating=use_self_gating, se_ratio=se_ratio, stochastic_depth_drop_rate=stochastic_depth) features = block(inputs) self.assertAllEqual([ 1, temporal_size // temporal_strides, spatial_size // spatial_strides, spatial_size // spatial_strides, filters * 4 ], features.shape.as_list()) if __name__ == '__main__': tf.test.main()