# Copyright 2023 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Utility functions for dataloader.""" import tensorflow as tf, tf_keras from official.legacy.detection.utils import input_utils def process_source_id(source_id): """Processes source_id to the right format.""" if source_id.dtype == tf.string: source_id = tf.cast(tf.strings.to_number(source_id), tf.int64) with tf.control_dependencies([source_id]): source_id = tf.cond( pred=tf.equal(tf.size(input=source_id), 0), true_fn=lambda: tf.cast(tf.constant(-1), tf.int64), false_fn=lambda: tf.identity(source_id)) return source_id def pad_groundtruths_to_fixed_size(gt, n): """Pads the first dimension of groundtruths labels to the fixed size.""" gt['boxes'] = input_utils.pad_to_fixed_size(gt['boxes'], n, -1) gt['is_crowds'] = input_utils.pad_to_fixed_size(gt['is_crowds'], n, 0) gt['areas'] = input_utils.pad_to_fixed_size(gt['areas'], n, -1) gt['classes'] = input_utils.pad_to_fixed_size(gt['classes'], n, -1) return gt