File size: 73,606 Bytes
96de260
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
"""
AI Agent for generating Manim animations from text prompts using pydantic-ai.
"""

import os
from typing import List, Optional
from dotenv import load_dotenv
import gradio as gr
from pydantic_ai.models.openai import OpenAIModel
from pydantic_ai.providers.openai import OpenAIProvider
from pydantic_ai import Agent, RunContext
from pydantic import BaseModel, Field
import openai
import tempfile
import subprocess
import logging
from datetime import datetime
import shutil
import time
from io import StringIO
import re
import json
import logging
    

# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# Load environment variables
load_dotenv()
llm = "deepseek-ai/DeepSeek-V3"

# Define Pydantic models for structured data
class AnimationPrompt(BaseModel):
    """User input for animation generation."""
    description: str = Field(..., description="Text description of the mathematical or physics concept to animate")
    complexity: str = Field("medium", description="Desired complexity of the animation")
    
class AnimationScenario(BaseModel):
    """Structured scenario for animation generation."""
    title: str = Field(..., description="Title of the animation")
    objects: List[str] = Field(..., description="Mathematical objects to include in the animation")
    transformations: List[str] = Field(..., description="Transformations to apply to the objects")
    equations: Optional[List[str]] = Field(None, description="Mathematical equations to visualize")
    
class AnimationResult(BaseModel):
    """Result of animation generation."""
    code: str = Field(..., description="Generated Manim code")
    video_path: str = Field(..., description="Path to the generated video file")

# New layout configuration model
class LayoutConfiguration(BaseModel):
    """Configuration for layout optimization of animation elements."""
    min_spacing: float = Field(0.5, description="Minimum spacing between elements in Manim units")
    vertical_alignment: List[str] = Field(["TOP", "CENTER", "BOTTOM"], description="Vertical alignment options")
    horizontal_alignment: List[str] = Field(["LEFT", "CENTER", "RIGHT"], description="Horizontal alignment options")
    staggered_animations: bool = Field(True, description="Whether to stagger animations for better clarity")
    screen_regions: List[str] = Field(["UL", "UP", "UR", "LEFT", "CENTER", "RIGHT", "DL", "DOWN", "DR"], 
                                     description="Screen regions for element positioning")
    canvas_size: tuple = Field((14, 8), description="Canvas size in Manim units (width, height)")

# New evaluation result model
class EvaluationResult(BaseModel):
    """Results of code evaluation."""
    has_errors: bool = Field(False, description="Whether the code has any errors")
    syntax_errors: List[str] = Field([], description="Syntax errors found in the code")
    positioning_issues: List[str] = Field([], description="Issues with element positioning")
    overlap_issues: List[str] = Field([], description="Potential element overlaps")
    suggestions: List[str] = Field([], description="Suggestions for improvement")
    fixed_code: Optional[str] = Field(None, description="Fixed code if available")

model = OpenAIModel(
    'deepseek-ai/DeepSeek-V3',
    provider=OpenAIProvider(
        base_url='https://api.together.xyz/v1', api_key=os.environ.get('TOGETHER_API_KEY')
    ),
)
# Create the agent with a static system prompt
manim_agent = Agent(
    model,  # or use Together API as needed
    deps_type=AnimationPrompt,  # Use AnimationPrompt as dependency type
    system_prompt=(
        "You are a specialized AI agent for creating mathematical animations. "
        "Your goal is to convert user descriptions into precise Manim code "
        "that visualizes mathematical and physics concepts clearly and elegantly."
    ),
)

# Create a layout optimization agent
layout_agent = Agent(
    model,
    deps_type=AnimationPrompt,
    system_prompt=(
        "You are a specialized AI agent for optimizing layout and animations in Manim code. "
        "Your goal is to analyze and improve element positioning, prevent overlaps, "
        "and create step-by-step animations that are clear and educational. "
        "You understand how to use Manim's coordinate system and positioning methods effectively."
    ),
)

# Create an evaluation agent
evaluation_agent = Agent(
    model,
    deps_type=AnimationPrompt,
    system_prompt=(
        "You are a specialized AI agent for evaluating Manim animation code. "
        "Your goal is to detect errors, check for proper element positioning, "
        "and ensure the code follows best practices for clear mathematical animations. "
        "You understand Manim's syntax and common pitfalls in animation creation."
    ),
)

# Configure OpenAI client to use Together API
client = openai.OpenAI(
    api_key=os.environ.get("TOGETHER_API_KEY"),
    base_url="https://api.together.xyz/v1",
)

# Add dynamic system prompts
@manim_agent.system_prompt
def add_complexity_guidance(ctx: RunContext[AnimationPrompt]) -> str:
    """Add guidance based on requested complexity."""
    complexity = ctx.deps.complexity
    if complexity == "simple":
        return (
            "Create simple, easy-to-understand animations with minimal elements. "
            "Focus on clarity over sophistication."
        )
    elif complexity == "complex":
        return (
            "Create sophisticated animations with multiple mathematical elements and transformations. "
            "You can use advanced Manim features and complex mathematical concepts."
        )
    else:  # medium
        return (
            "Balance clarity and sophistication in your animations. "
            "Include enough detail to illustrate the concept clearly without overwhelming the viewer."
        )

@manim_agent.system_prompt
def add_timestamp() -> str:
    """Add a timestamp to the system prompt."""
    return f"Current date and time: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}"

@layout_agent.system_prompt
def add_layout_guidance(ctx: RunContext[AnimationPrompt]) -> str:
    """Add layout guidance based on complexity."""
    complexity = ctx.deps.complexity
    if complexity == "simple":
        return (
            "Optimize layout for simple animations with minimal elements. "
            "Use large spacing and clear positioning. "
            "Each step should be very distinct and have ample wait time between transitions."
        )
    elif complexity == "complex":
        return (
            "Optimize layout for complex animations with many elements. "
            "Use thoughtful positioning with elements grouped by relevance. "
            "Break animations into logical steps with clear transitions between concepts."
        )
    else:  # medium
        return (
            "Balance spacing and density in your layout. "
            "Position elements with sufficient spacing while utilizing screen space efficiently. "
            "Present animations in a step-by-step manner with appropriate timing."
        )

@evaluation_agent.system_prompt
def add_evaluation_guidance(ctx: RunContext[AnimationPrompt]) -> str:
    """Add evaluation guidance based on complexity."""
    complexity = ctx.deps.complexity
    if complexity == "simple":
        return (
            "Focus on finding basic errors and ensuring clear positioning of minimal elements. "
            "Simple animations should have ample spacing and no overlapping elements."
        )
    elif complexity == "complex":
        return (
            "Look for subtle issues in complex code, including potential element overlaps "
            "when multiple transformations occur. Check for proper timing between steps "
            "and verify that complex mathematical notations are correctly formatted."
        )
    else:  # medium
        return (
            "Balance between checking for technical errors and verifying good animation principles. "
            "Ensure elements are properly spaced and animations follow a logical step-by-step flow."
        )

@manim_agent.tool
def extract_scenario(ctx: RunContext[AnimationPrompt]) -> AnimationScenario:
    """Extract a structured animation scenario from a text prompt."""
    prompt = ctx.deps  # Get the AnimationPrompt from context
    
    # Use Together API with OpenAI client
    response = client.chat.completions.create(
        model=llm,
        messages=[
            {"role": "system", "content": """
Create a storyboard for a math/physics educational animation. Focus on making concepts clear for beginners.

Respond with a JSON object containing:
- title: A clear, engaging title
- objects: Mathematical objects to include (e.g., "coordinate_plane", "function_graph")
- transformations: Animation types to use (e.g., "fade_in", "transform")
- equations: Mathematical equations to feature (can be null)
- storyboard: 5-7 sections, each with:
  * section_name: Section name (e.g., "Introduction")
  * time_range: Timestamp range (e.g., "0:00-2:00")
  * narration: What the narrator says
  * visuals: What appears on screen
  * animations: Specific animations
  * key_points: 1-2 main takeaways

Include: introduction, simple explanation, detailed walkthrough, examples, and conclusion.

Use everyday analogies, define technical terms, and focus on visualization.

Only respond with the JSON object, nothing else.
"""},
            {"role": "user", "content": f"Create an animation storyboard for: '{prompt.description}'. "
                                        f"Complexity level: {prompt.complexity}. Make it beginner-friendly "
                                        f"with clear explanations and visual examples."}
        ]
    )
    content = response.choices[0].message.content
    
    try:
        # Extract JSON from response
        json_match = re.search(r'\{.*\}', content, re.DOTALL)
        if json_match:
            json_str = json_match.group(0)
            scenario_dict = json.loads(json_str)
            
            # Get basic scenario info
            title = scenario_dict.get('title', f"{prompt.description.capitalize()} Visualization")
            objects = scenario_dict.get('objects', [])
            transformations = scenario_dict.get('transformations', [])
            equations = scenario_dict.get('equations', None)
            
            # Store the storyboard in logger
            if 'storyboard' in scenario_dict:
                logger.info(f"Generated storyboard: {json.dumps(scenario_dict['storyboard'], indent=2)}")
            
            return AnimationScenario(
                title=title,
                objects=objects,
                transformations=transformations,
                equations=equations
            )
    except Exception as e:
        logger.error(f"Error parsing scenario JSON: {e}")
    
    # Fallback with default values
    return AnimationScenario(
        title=f"{prompt.description.capitalize()} Visualization",
        objects=["circle", "text", "coordinate_system"],
        transformations=["creation", "transformation", "highlight"],
        equations=None
    )

# Also simplify extract_scenario_direct with the same approach
def extract_scenario_direct(prompt: str, complexity: str = "medium") -> AnimationScenario:
    """Direct implementation of scenario extraction without using RunContext."""
    # Use Together API with OpenAI client
    response = client.chat.completions.create(
        model=llm,
        messages=[
            {"role": "system", "content": """
Create a storyboard for a math/physics educational animation. Focus on making concepts clear for beginners.

Respond with a JSON object containing:
- title: A clear, engaging title
- objects: Mathematical objects to include (e.g., "coordinate_plane", "function_graph")
- transformations: Animation types to use (e.g., "fade_in", "transform")
- equations: Mathematical equations to feature (can be null)
- storyboard: 5-7 sections, each with:
  * section_name: Section name (e.g., "Introduction")
  * time_range: Timestamp range (e.g., "0:00-2:00")
  * narration: What the narrator says
  * visuals: What appears on screen
  * animations: Specific animations
  * key_points: 1-2 main takeaways

Include: introduction, simple explanation, detailed walkthrough, examples, and conclusion.

Use everyday analogies, define technical terms, and focus on visualization.

Only respond with the JSON object, nothing else.
"""},
            {"role": "user", "content": f"Create an animation storyboard for: '{prompt}'. "
                                        f"Complexity level: {complexity}. Make it beginner-friendly "
                                        f"with clear explanations and visual examples."}
        ]
    )
    content = response.choices[0].message.content
    
    try:
        # Extract JSON from response
        json_match = re.search(r'\{.*\}', content, re.DOTALL)
        if json_match:
            json_str = json_match.group(0)
            scenario_dict = json.loads(json_str)
            
            # Get basic scenario info
            title = scenario_dict.get('title', f"{prompt.capitalize()} Visualization")
            objects = scenario_dict.get('objects', [])
            transformations = scenario_dict.get('transformations', [])
            equations = scenario_dict.get('equations', None)
            
            # Store the storyboard in logger
            if 'storyboard' in scenario_dict:
                logger.info(f"Generated storyboard: {json.dumps(scenario_dict['storyboard'], indent=2)}")
            
            return AnimationScenario(
                title=title,
                objects=objects,
                transformations=transformations,
                equations=equations
            )
    except Exception as e:
        logger.error(f"Error parsing scenario JSON: {e}")
    
    # Fallback based on keywords in prompt
    objects = ["circle", "text", "coordinate_system"]
    transformations = ["creation", "transformation", "highlight"]
    equations = None
    
    if any(kw in prompt.lower() for kw in ["triangle", "pythagorean"]):
        objects = ["triangle", "square", "text"]
        transformations = ["creation", "area_calculation"]
        equations = ["a^2 + b^2 = c^2"]
    elif any(kw in prompt.lower() for kw in ["calculus", "derivative", "integral"]):
        objects = ["function_graph", "tangent_line", "area"]
        transformations = ["drawing", "zoom", "fill"]
        equations = ["f'(x) = \\lim_{h \\to 0}\\frac{f(x+h) - f(x)}{h}"]
    
    return AnimationScenario(
        title=f"{prompt.capitalize()} Visualization",
        objects=objects,
        transformations=transformations,
        equations=equations
    )

@manim_agent.tool
def generate_code(ctx: RunContext[AnimationPrompt], scenario: AnimationScenario) -> str:
    """Generate Manim code from a structured scenario."""
    # Use OpenAI to generate Manim code
    objects_str = ", ".join(scenario.objects)
    transformations_str = ", ".join(scenario.transformations)
    equations_str = ", ".join(scenario.equations) if scenario.equations else "No equations"
    
    prompt_description = ctx.deps.description  # Access the original prompt
    response = client.chat.completions.create(
        model=llm,
        messages=[
            {"role": "system", "content": "Generate Manim code for mathematical animations."},
            {"role": "user", "content": f"Create Manim code for an animation titled '{scenario.title}' "
                                       f"with objects: {objects_str}, transformations: {transformations_str}, "
                                       f"and equations: {equations_str}. Original request: '{prompt_description}'"}
        ]
    )
    return response.choices[0].message.content

@layout_agent.tool
def analyze_element_layout(ctx: RunContext[AnimationPrompt], code: str) -> dict:
    """Analyze Manim code for potential layout issues and element positioning."""
    prompt = ctx.deps
    
    response = client.chat.completions.create(
        model=llm,
        messages=[
            {"role": "system", "content": """
Analyze Manim code for layout issues and element positioning. Look for:
1. Overlapping elements or text
2. Elements positioned too close to each other
3. Elements positioned off-screen or at extreme edges
4. Poor use of screen space
5. Too many elements appearing simultaneously
6. Lack of clear positioning commands

Respond with a JSON object containing:
- issues: List of detected layout issues
- suggestions: List of positioning improvements
- animation_flow: List of animation sequence improvements
- spacing: Suggested minimum spacing between elements
- regions: Suggested screen regions to use for key elements
"""
            },
            {"role": "user", "content": f"Analyze this Manim code for layout issues:\n\n```python\n{code}\n```\n\nPrompt: {prompt.description}, Complexity: {prompt.complexity}"}
        ]
    )
    
    content = response.choices[0].message.content
    
    try:
        # Extract JSON from response
        json_match = re.search(r'\{.*\}', content, re.DOTALL)
        if json_match:
            json_str = json_match.group(0)
            analysis = json.loads(json_str)
            return analysis
    except Exception as e:
        logger.error(f"Error parsing layout analysis: {e}")
    
    # Fallback with default values
    return {
        "issues": ["Potential element overlap", "Undefined positioning"],
        "suggestions": ["Use explicit coordinates for all elements", "Add spacing between elements"],
        "animation_flow": ["Break complex animations into steps", "Add wait time between steps"],
        "spacing": 1.0,
        "regions": ["UP", "DOWN", "LEFT", "RIGHT", "CENTER"]
    }

@layout_agent.tool
def optimize_layout(ctx: RunContext[AnimationPrompt], code: str, analysis: dict) -> str:
    """Optimize the layout of elements in Manim code."""
    prompt = ctx.deps
    
    # Serialize the analysis for the prompt
    analysis_str = json.dumps(analysis, indent=2)
    
    response = client.chat.completions.create(
        model=llm,
        messages=[
            {"role": "system", "content": """
Optimize the layout and animation flow in Manim code. Follow these rules:
1. Explicitly position ALL elements with coordinates (e.g., .move_to(), .shift(), .to_edge())
2. Ensure minimum spacing (1.0 units) between all elements
3. Use screen regions effectively (UP, DOWN, LEFT, RIGHT, UL, UR, DL, DR)
4. Group related elements using VGroup and arrange them logically
5. Break complex animations into steps with self.wait() between them
6. Use sequential animations for clarity (one concept at a time)
7. Use consistent positioning and transitions throughout the animation
8. Add comments explaining positioning choices

Preserve all mathematical content and educational purpose of the animation.
Only make changes to improve layout, positioning, and animation flow.
"""
            },
            {"role": "user", "content": f"Original code:\n\n```python\n{code}\n```\n\nOptimize the layout based on this analysis:\n{analysis_str}\n\nPrompt: {prompt.description}, Complexity: {prompt.complexity}\n\nReturn the optimized code that fixes all layout issues."}
        ]
    )
    
    optimized_code = response.choices[0].message.content
    
    # Clean up the response to extract just the code
    if "```python" in optimized_code:
        optimized_code = optimized_code.split("```python", 1)[1]
    if "```" in optimized_code:
        optimized_code = optimized_code.split("```", 1)[0]
    
    return optimized_code.strip()

@evaluation_agent.tool
def check_syntax_errors(ctx: RunContext[AnimationPrompt], code: str) -> List[str]:
    """Check for Python and Manim-specific syntax errors."""
    prompt = ctx.deps
    
    response = client.chat.completions.create(
        model=llm,
        messages=[
            {"role": "system", "content": """
Analyze this Manim code for syntax errors and logical mistakes. Look for:

1. Python syntax errors (missing colons, parentheses, indentation problems)
2. Manim-specific errors (incorrect class usage, invalid animation methods)
3. Undefined variables or objects that are used before definition
4. Incorrect parameter types or values
5. Missing imports or misused Manim classes
6. LaTeX syntax errors in MathTex objects
7. Animation errors (using wrong objects in animations, incorrect method calls)

For each error found, provide:
1. The line number or code region with the error
2. A description of what's wrong
3. A suggested fix

Be thorough but only focus on actual errors, not style issues.
"""
            },
            {"role": "user", "content": f"Check this Manim code for syntax errors:\n\n```python\n{code}\n```\n\nPrompt: {prompt.description}, Complexity: {prompt.complexity}"}
        ]
    )
    
    # Extract errors from response
    error_content = response.choices[0].message.content
    error_lines = error_content.split('\n')
    
    # Filter for actual errors
    errors = []
    current_error = ""
    for line in error_lines:
        if line.strip().startswith(("Error", "Issue", "Problem", "Bug", "Line", "1.", "2.", "3.", "4.", "5.")):
            if current_error:
                errors.append(current_error.strip())
            current_error = line.strip()
        elif current_error and line.strip():
            current_error += " " + line.strip()
    
    # Add the last error if there is one
    if current_error:
        errors.append(current_error.strip())
    
    return errors

@evaluation_agent.tool
def check_positioning(ctx: RunContext[AnimationPrompt], code: str) -> dict:
    """Check for proper positioning and potential overlaps in the animation."""
    prompt = ctx.deps
    
    response = client.chat.completions.create(
        model=llm,
        messages=[
            {"role": "system", "content": """
Analyze this Manim code specifically for positioning and spacing issues. Look for:

1. Objects without explicit position commands (move_to, shift, to_edge, etc.)
2. Elements that might overlap based on their coordinates
3. Text or equations positioned too close to each other
4. Elements positioned too close to the edge of the screen
5. Improper grouping of related elements
6. Elements with undefined positioning that might appear at origin (0,0)
7. Animations where multiple elements move to the same location

Analyze the coordinates and create a mental map of where objects are positioned.
Flag any positions where elements might overlap or be too close (less than 1.0 units apart).

Respond with a JSON object containing:
- positioning_issues: List of positioning problems found
- overlap_issues: List of specific coordinates or elements that might overlap
- suggestions: Specific suggestions to improve positioning
"""
            },
            {"role": "user", "content": f"Analyze this Manim code for positioning and spacing issues:\n\n```python\n{code}\n```\n\nPrompt: {prompt.description}, Complexity: {prompt.complexity}"}
        ]
    )
    
    content = response.choices[0].message.content
    
    try:
        # Extract JSON from response
        json_match = re.search(r'\{.*\}', content, re.DOTALL)
        if json_match:
            json_str = json_match.group(0)
            positioning_analysis = json.loads(json_str)
            return positioning_analysis
    except Exception as e:
        logger.error(f"Error parsing positioning analysis: {e}")
    
    # If no valid JSON is found, extract information manually
    positioning_issues = []
    overlap_issues = []
    suggestions = []
    
    # Simple pattern matching to extract issues
    for line in content.split('\n'):
        line = line.strip()
        if "position" in line.lower() or "coordinate" in line.lower() or "overlap" in line.lower():
            if line.startswith(("- ", "* ", "1. ", "2. ")):
                positioning_issues.append(line.lstrip("- *123456789. "))
        if "overlap" in line.lower():
            if line.startswith(("- ", "* ", "1. ", "2. ")):
                overlap_issues.append(line.lstrip("- *123456789. "))
        if "suggest" in line.lower() or "should" in line.lower() or "could" in line.lower():
            if line.startswith(("- ", "* ", "1. ", "2. ")):
                suggestions.append(line.lstrip("- *123456789. "))
    
    return {
        "positioning_issues": positioning_issues,
        "overlap_issues": overlap_issues,
        "suggestions": suggestions
    }

@evaluation_agent.tool
def fix_code_issues(ctx: RunContext[AnimationPrompt], code: str, syntax_errors: List[str], positioning_issues: dict) -> str:
    """Fix detected issues in the code."""
    prompt = ctx.deps
    
    # Format issues for the prompt
    syntax_errors_str = "\n".join([f"- {error}" for error in syntax_errors])
    
    positioning_issues_str = ""
    if "positioning_issues" in positioning_issues:
        positioning_issues_str += "\nPositioning Issues:\n" + "\n".join([f"- {issue}" for issue in positioning_issues["positioning_issues"]])
    
    if "overlap_issues" in positioning_issues:
        positioning_issues_str += "\nOverlap Issues:\n" + "\n".join([f"- {issue}" for issue in positioning_issues["overlap_issues"]])
    
    if "suggestions" in positioning_issues:
        positioning_issues_str += "\nSuggestions:\n" + "\n".join([f"- {suggestion}" for suggestion in positioning_issues["suggestions"]])
    
    response = client.chat.completions.create(
        model=llm,
        messages=[
            {"role": "system", "content": """
Fix the provided Manim code by addressing all identified issues. Follow these guidelines:

1. Fix all syntax errors and logical mistakes first
2. Fix positioning issues by adding explicit positioning commands
3. Resolve element overlaps by repositioning elements with adequate spacing
4. Implement all positioning suggestions to improve clarity
5. Maintain the original educational intent and mathematical content
6. Ensure all animations follow a logical step-by-step flow
7. Add comments explaining your fixes for complex changes

Return the complete, corrected code ready for rendering.
"""
            },
            {"role": "user", "content": 
                f"Fix the following Manim code by addressing these issues:\n\n"
                f"Syntax Errors:\n{syntax_errors_str}\n\n"
                f"Positioning Issues:{positioning_issues_str}\n\n"
                f"Original Code:\n```python\n{code}\n```\n\n"
                f"Original Prompt: {prompt.description}, Complexity: {prompt.complexity}\n\n"
                f"Return the complete fixed code."
            }
        ]
    )
    
    fixed_code = response.choices[0].message.content
    
    # Clean up the response to extract just the code
    if "```python" in fixed_code:
        fixed_code = fixed_code.split("```python", 1)[1]
    if "```" in fixed_code:
        fixed_code = fixed_code.split("```", 1)[0]
    
    return fixed_code.strip()

@evaluation_agent.tool
def evaluate_code(ctx: RunContext[AnimationPrompt], code: str) -> EvaluationResult:
    """Evaluate Manim code for errors and positioning issues."""
    # Check for syntax errors
    syntax_errors = check_syntax_errors(ctx, code)
    
    # Check for positioning issues
    positioning_analysis = check_positioning(ctx, code)
    
    positioning_issues = positioning_analysis.get("positioning_issues", [])
    overlap_issues = positioning_analysis.get("overlap_issues", [])
    suggestions = positioning_analysis.get("suggestions", [])
    
    # Determine if there are errors
    has_errors = len(syntax_errors) > 0 or len(positioning_issues) > 0 or len(overlap_issues) > 0
    
    # If there are errors, fix the code
    fixed_code = None
    if has_errors:
        fixed_code = fix_code_issues(ctx, code, syntax_errors, positioning_analysis)
    
    return EvaluationResult(
        has_errors=has_errors,
        syntax_errors=syntax_errors,
        positioning_issues=positioning_issues,
        overlap_issues=overlap_issues,
        suggestions=suggestions,
        fixed_code=fixed_code
    )

@manim_agent.tool_plain
def render_animation(code: str, quality="medium_quality") -> str:
    """Render Manim code into a video. This doesn't need the context."""
    return render_manim_video(code, quality)

def render_manim_video(code, quality="medium_quality"):
    try:
        # Detect if we're running on Hugging Face
        is_huggingface = os.environ.get("SPACE_ID") is not None
        
        # Use appropriate temp and output directories based on the environment
        if is_huggingface:
            base_temp = "/tmp"
            output_dir = "/tmp/videos"  # Use /tmp for HF Spaces
        else:
            base_temp = os.path.join(os.getcwd(), "tmp")
            output_dir = os.path.join(os.getcwd(), "videos")
        
        # Ensure directories exist with proper permissions
        os.makedirs(base_temp, exist_ok=True)
        os.makedirs(output_dir, exist_ok=True)
        
        # Use a short random ID instead of the default long path from mkdtemp
        import uuid
        short_id = str(uuid.uuid4())[:8]  # Use only first 8 chars of UUID
        temp_dir = os.path.join(base_temp, short_id)
        os.makedirs(temp_dir, exist_ok=True)
        
        script_path = os.path.join(temp_dir, "script.py")
        
        with open(script_path, "w") as f:
            f.write(code)
        
        class_name = None
        for line in code.split("\n"):
            if line.startswith("class ") and "Scene" in line:
                class_name = line.split("class ")[1].split("(")[0].strip()
                break
            
        if not class_name:
            return "Error: Could not identify the Scene class in the generated code."
        
        if quality == "high_quality":
            command = ["manim", "-qh", script_path, class_name]
            quality_dir = "1080p60"
        elif quality == "low_quality":
            command = ["manim", "-ql", script_path, class_name]
            quality_dir = "480p15"
        else:
            command = ["manim", "-qm", script_path, class_name]
            quality_dir = "720p30"
        
        logger.info(f"Executing command: {' '.join(command)}")
        
        result = subprocess.run(command, cwd=temp_dir, capture_output=True, text=True)
        
        logger.info(f"Manim stdout: {result.stdout}")
        logger.error(f"Manim stderr: {result.stderr}")
        
        if result.returncode != 0:
            logger.error(f"Manim execution failed: {result.stderr}")
            return f"Error rendering video: {result.stderr}"
        
        media_dir = os.path.join(temp_dir, "media")
        videos_dir = os.path.join(media_dir, "videos")
        
        if not os.path.exists(videos_dir):
            return "Error: No video was generated. Check if Manim is installed correctly."
        
        scene_dirs = [d for d in os.listdir(videos_dir) if os.path.isdir(os.path.join(videos_dir, d))]
        
        if not scene_dirs:
            return "Error: No scene directory found in the output."
        
        scene_dir = max([os.path.join(videos_dir, d) for d in scene_dirs], key=os.path.getctime)
        
        mp4_files = [f for f in os.listdir(os.path.join(scene_dir, quality_dir)) if f.endswith(".mp4")]
        
        if not mp4_files:
            return "Error: No MP4 file was generated."
        
        video_file = max([os.path.join(scene_dir, quality_dir, f) for f in mp4_files], key=os.path.getctime)
        
        # Use a shorter filename format with timestamp
        from datetime import datetime
        timestamp = datetime.now().strftime("%m%d%H%M")
        output_file = os.path.join(output_dir, f"vid_{timestamp}_{short_id}.mp4")
        
        shutil.copy2(video_file, output_file)
        
        logger.info(f"Video generated: {output_file}")
        
        return output_file
        
    except Exception as e:
        logger.error(f"Error rendering video: {e}")
        return f"Error: {str(e)}"
    finally:
        try:
            # Clean up temporary directory if it exists
            if 'temp_dir' in locals() and os.path.exists(temp_dir):
                shutil.rmtree(temp_dir)
        except Exception as e:
            logger.error(f"Error cleaning up temporary directory: {e}")

def format_log_output(scenario: AnimationScenario, code: str) -> str:
    """Format scenario and code for display in UI."""
    log_output = f"## Animation Scenario\n\n"
    log_output += f"**Title:** {scenario.title}\n\n"
    
    # Check if we have a storyboard in the logger
    import json
    import re
    from io import StringIO
    import logging
    
    # Create a string buffer to capture log output
    log_buffer = StringIO()
    log_handler = logging.StreamHandler(log_buffer)
    logger.addHandler(log_handler)
    
    # Extract storyboard from logs if possible
    storyboard = None
    log_handler.flush()
    logs = log_buffer.getvalue()
    logger.removeHandler(log_handler)
    
    json_match = re.search(r'Generated storyboard: (\[.*\])', logs)
    if json_match:
        try:
            storyboard_str = json_match.group(1)
            storyboard = json.loads(storyboard_str)
        except:
            storyboard = None
    
    # If storyboard exists, display it
    if storyboard:
        log_output += f"## Animation Storyboard\n\n"
        for i, section in enumerate(storyboard):
            log_output += f"### {i+1}. {section.get('section_name', 'Section')}\n"
            log_output += f"**Time:** {section.get('time_range', 'N/A')}\n\n"
            log_output += f"**Narration:** {section.get('narration', '')}\n\n"
            log_output += f"**Visuals:** {section.get('visuals', '')}\n\n"
            log_output += f"**Animations:** {', '.join(section.get('animations', []))}\n\n"
            
            if 'key_points' in section and section['key_points']:
                log_output += f"**Key Points:**\n"
                if isinstance(section['key_points'], list):
                    for point in section['key_points']:
                        log_output += f"- {point}\n"
                else:
                    log_output += f"{section['key_points']}\n"
            
            log_output += "---\n\n"
    
    # Continue with regular output
    log_output += f"**Mathematical Objects:**\n"
    for obj in scenario.objects:
        log_output += f"- {obj}\n"
    
    log_output += f"\n**Transformations:**\n"
    for transform in scenario.transformations:
        log_output += f"- {transform}\n"
    
    if scenario.equations:
        log_output += f"\n**Equations:**\n"
        for eq in scenario.equations:
            log_output += f"- {eq}\n"
    
    log_output += f"\n## Generated Manim Code\n\n```python\n{code}\n```"
    
    return log_output

# Add a memory class to store conversation history
class ConversationMemory:
    def __init__(self):
        self.history = []
        self.current_scenario = None
        self.current_code = None
    
    def add_interaction(self, prompt, scenario, code, video_path):
        self.history.append({
            "prompt": prompt,
            "scenario": scenario,
            "code": code,
            "video_path": video_path,
            "timestamp": datetime.now().isoformat()
        })
        self.current_scenario = scenario
        self.current_code = code
    
    def get_context_for_refinement(self):
        if not self.history:
            return ""
        
        # Construct context from the last interaction
        last = self.history[-1]
        context = f"Previous prompt: {last['prompt']}\n"
        if self.current_scenario and hasattr(self.current_scenario, 'title'):
            context += f"Current animation title: {self.current_scenario.title}\n"
        return context

# Initialize the memory
memory = ConversationMemory()

# Function to refine animation based on feedback
def refine_animation(code: str, feedback: str, quality: str = "medium_quality") -> tuple:
    """Refine animation based on user feedback."""
    try:
        # Special case for layout/positioning feedback
        if any(keyword in feedback.lower() for keyword in ["position", "layout", "overlap", "spacing", "step by step", "clear"]):
            # Try to apply specialized layout optimization
            prompt = memory.history[-1]["prompt"] if memory.history else "Mathematical animation"
            complexity = "medium"  # Default complexity
            
            refined_code = optimize_element_positioning(code, prompt, complexity)
        else:
            # Original feedback processing code
            # Get context from memory
            context = memory.get_context_for_refinement()
            
            # Use LLM to refine the code based on feedback
            response = client.chat.completions.create(
                model=llm,
                messages=[
                    {"role": "system", "content": """
You are a Manim code expert. Your task is to refine animation code based on user feedback.
Keep the overall structure and purpose of the animation, but implement the changes requested.
Make sure the code remains valid and follows Manim best practices.

IMPORTANT REQUIREMENTS:
1. Only return the complete, corrected Manim code
2. Ensure class name and structure remains consistent
3. All changes must be compatible with Manim Community edition
4. Do not explain your changes in comments outside of helpful inline comments
"""
                    },
                    {"role": "user", "content": f"Here is the current Manim animation code:\n\n```python\n{code}\n```\n\n{context}\nPlease refine this code based on this feedback: \"{feedback}\"\n\nReturn only the improved code."}
                ]
            )
            
            refined_code = response.choices[0].message.content.strip()
            
            # Remove any markdown code formatting if present
            if refined_code.startswith("```python"):
                refined_code = refined_code.split("```python", 1)[1]
            if refined_code.endswith("```"):
                refined_code = refined_code.rsplit("```", 1)[0]
            
            refined_code = refined_code.strip()
        
        # Render the refined code
        video_path = render_manim_video(refined_code, quality)
        
        if video_path and not video_path.startswith("Error"):
            # Update memory with refined code
            if memory.current_scenario:
                memory.current_code = refined_code
            
            return refined_code, video_path, f"## Refined Animation\n\nFeedback incorporated: \"{feedback}\"\n\nAnimation successfully rendered."
        else:
            return refined_code, None, f"## Error in Rendering\n\n```\n{video_path}\n```\n\nPlease check your code for errors."
    
    except Exception as e:
        logger.error(f"Error refining animation: {e}")
        return code, None, f"## Error in Refinement\n\n```\n{str(e)}\n```\n\nPlease try again with different feedback."

# Function to process user request
def generate_animation(prompt: str, complexity: str = "medium", quality: str = "medium_quality") -> tuple:
    """Generate an animation from a text prompt."""
    try:
        # Create prompt object with complexity
        prompt_obj = AnimationPrompt(description=prompt, complexity=complexity)
        
        # Run the agent in a way that it will use all necessary tools
        result = manim_agent.run_sync(
            f"Generate an animation from this description: {prompt}. "
            f"First, extract the key elements of the scenario. Then, generate "
            f"the Manim code for the animation. Finally, render the animation.",
            deps=prompt_obj
        )
        
        # As a fallback, we'll use the direct methods
        scenario = extract_scenario_direct(prompt, complexity)
        
        # Fix: Use generate_code_direct instead of generate_code
        # generate_code is an agent tool that requires a RunContext
        code = generate_code_direct(prompt, scenario, complexity)
        
        video_path = render_manim_video(code, quality)  # Use the new render function
        
        log_output = format_log_output(scenario, code)
        
        # Store in memory
        memory.add_interaction(prompt, scenario, code, video_path)
        
        return code, video_path, log_output
    except Exception as e:
        logger.error(f"Error generating animation: {e}")
        return f"Error: {str(e)}", None, f"Error occurred: {str(e)}"

# Add the missing generate_code_direct function if it doesn't exist
def generate_code_direct(prompt: str, scenario: AnimationScenario, complexity: str = "medium") -> str:
    """Direct implementation of code generation without using RunContext."""
    # Use Together API with OpenAI client
    objects_str = ", ".join(scenario.objects)
    transformations_str = ", ".join(scenario.transformations)
    equations_str = ", ".join(scenario.equations) if scenario.equations else "No equations"
    
    # Try to get storyboard from logger if it exists
    storyboard_info = ""
    from io import StringIO
    import re
    import json
    import logging
    
    # Create a string buffer to capture log output
    log_buffer = StringIO()
    log_handler = logging.StreamHandler(log_buffer)
    logger.addHandler(log_handler)
    log_handler.flush()
    logs = log_buffer.getvalue()
    logger.removeHandler(log_handler)
    
    # Extract storyboard from logs if possible
    json_match = re.search(r'Generated storyboard: (\[.*\])', logs)
    if json_match:
        try:
            storyboard_str = json_match.group(1)
            storyboard = json.loads(storyboard_str)
            storyboard_info = "Follow this narrative structure in your animation:\n"
            for i, section in enumerate(storyboard):
                storyboard_info += f"Section {i+1}: {section.get('section_name', 'Section')} - {section.get('time_range', 'N/A')}\n"
                storyboard_info += f"Narration: {section.get('narration', '')}\n"
                storyboard_info += f"Visuals: {section.get('visuals', '')}\n"
                storyboard_info += f"Animations: {', '.join(section.get('animations', []))}\n\n"
        except:
            storyboard_info = ""
    
    response = client.chat.completions.create(
        model=llm,
        messages=[
            {"role": "system", "content": f"""
Create professional Manim animation code that explains mathematical concepts clearly and elegantly. Your code MUST:

TECHNICAL REQUIREMENTS:
1. Use 'from manim import *' at the top
2. Create a Scene class named 'ManimScene' that extends Scene
3. Implement the construct method correctly
4. Use only standard Manim Community edition objects and methods
5. Include proper self.play() and self.wait() calls with appropriate durations
6. Use valid LaTeX syntax for all mathematical expressions
7. Be fully compilable without errors
8. Include helpful comments explaining each section
9. Just return python code, do not include apostrophe in front and back of code

VISUAL STRUCTURE AND LAYOUT:
1. Structure the animation as a narrative with clear sections (introduction, explanation, conclusion)
2. Create title screens with engaging typography and animations
3. Position ALL elements with EXPLICIT coordinates using shift() or move_to() methods
4. Ensure AT LEAST 2.0 units of space between separate visual elements
5. For equations, use MathTex with proper scaling (scale(0.8) for complex equations)
6. Group related objects using VGroup and arrange them with arrange() method
7. When showing multiple equations, use arrange_in_grid() or arrange() with DOWN/RIGHT
8. For graphs, set explicit x_range and y_range with generous padding around functions
9. Scale ALL text elements appropriately (Title: 1.2, Headers: 1.0, Body: 0.8)
10. Use colors consistently and meaningfully (BLUE for emphasis, RED for important points)

CRITICAL: ELEMENT MANAGEMENT AND STEP-BY-STEP REQUIREMENTS:
1. NEVER show too many elements on screen at once - max 3-4 related elements at any time
2. ALWAYS use self.play(FadeOut(element)) to explicitly remove elements when moving to a new concept
3. DO NOT use self.clear() as it doesn't actually remove elements from the scene
4. Implement strict SEQUENTIAL animation - introduce only ONE concept or element at a time
5. Use self.wait(0.7) to 1.5 for short pauses and self.wait(2) for important concepts
6. Organize the screen into distinct regions (TOP for titles, CENTER for main content, BOTTOM for explanations)
7. For sequential steps in derivations or proofs, use transform_matching_tex() to smoothly evolve equations
8. Use MoveToTarget() for repositioning elements that need to stay on screen between steps
9. At the end of each section, EXPLICITLY remove all elements with self.play(FadeOut(elem1, elem2, ...))
10. When positioning new elements, verify they won't overlap existing elements
11. For elements that must appear together, use VGroup but animate their creation one by one

ANIMATION TECHNIQUES:
1. Use FadeIn for introductions of new elements
2. Apply TransformMatchingTex when evolving equations
3. Use Create for drawing geometric objects
4. Implement smooth transitions between different concepts with ReplacementTransform
5. Highlight important parts with Indicate or Circumscribe
6. Add appropriate pauses: self.wait(0.7) after minor steps, self.wait(1.5) after important points
7. For complex animations, break them into smaller steps with appropriate timing
8. Use MoveAlongPath for demonstrating motion or change over time
9. Create emphasis with scale_about_point or succession of animations
10. Use camera movements sparingly and smoothly

EDUCATIONAL CLARITY:
1. Begin with simple concepts and build to more complex ones
2. Reveal information progressively, not all at once
3. Use visual metaphors to represent abstract concepts
4. Include clear labels for all important elements
5. When showing equations, animate their components step by step
6. Provide visual explanations alongside mathematical notation
7. Use consistent notation throughout the animation
8. Show practical applications or examples of the concept
9. Summarize key points at the end of the animation

{storyboard_info}

RESPOND WITH CLEAN, WELL-STRUCTURED CODE ONLY. DO NOT INCLUDE EXPLANATIONS OUTSIDE OF CODE COMMENTS.
"""
            },
            {"role": "user", "content": f"Create a comprehensive Manim animation for '{scenario.title}' that teaches this concept: '{prompt}'. \n\nUse these mathematical objects: {objects_str}. \nImplement these transformations/animations: {transformations_str}. \nFeature these equations: {equations_str}. \n\nComplexity level: {complexity}. \n\nEnsure all elements are properly spaced and positioned to prevent overlap. Structure the animation with a clear introduction, step-by-step explanation, and conclusion."}
        ]
    )
    
    initial_code = response.choices[0].message.content
    
    # Analyze and optimize the layout using the layout agent
    try:
        # Create prompt object for context
        prompt_obj = AnimationPrompt(description=prompt, complexity=complexity)
        
        # Fix: Don't pass 'code' as a keyword argument to run_sync
        # Instead, include the code in the prompt text
        layout_result = layout_agent.run_sync(
            f"Analyze and optimize the layout of this Manim code for the prompt: {prompt}\n\n"
            f"```python\n{initial_code}\n```",
            deps=prompt_obj
        )
        
        # If the layout agent successfully returned optimized code, use that
        if isinstance(layout_result, str) and "from manim import" in layout_result:
            # Extract the code part if it returned markdown-formatted code
            if "```python" in layout_result:
                layout_result = layout_result.split("```python", 1)[1].split("```", 1)[0].strip()
            return layout_result
        
        # Fix: Don't manually create a RunContext
        # Instead use a direct approach for optimization
        optimized_code = direct_optimize_layout(initial_code, prompt, complexity)
        
        if optimized_code and "from manim import" in optimized_code:
            return optimized_code
    except Exception as e:
        logger.error(f"Error during layout optimization: {e}")
        # If optimization fails, return the initial code
        
    return initial_code

# Add direct implementation of layout optimization functions
def direct_analyze_layout(code: str, prompt: str, complexity: str = "medium") -> dict:
    """Analyze Manim code for layout issues without using agent tools."""
    try:
        response = client.chat.completions.create(
            model=llm,
            messages=[
                {"role": "system", "content": """
Analyze Manim code for layout issues and element positioning. Look for:
1. Overlapping elements or text
2. Elements positioned too close to each other
3. Elements positioned off-screen or at extreme edges
4. Poor use of screen space
5. Too many elements appearing simultaneously
6. Lack of clear positioning commands

Respond with a JSON object containing:
- issues: List of detected layout issues
- suggestions: List of positioning improvements
- animation_flow: List of animation sequence improvements
- spacing: Suggested minimum spacing between elements
- regions: Suggested screen regions to use for key elements
"""
                },
                {"role": "user", "content": f"Analyze this Manim code for layout issues:\n\n```python\n{code}\n```\n\nPrompt: {prompt}, Complexity: {complexity}"}
            ]
        )
        
        content = response.choices[0].message.content
        
        try:
            # Extract JSON from response
            json_match = re.search(r'\{.*\}', content, re.DOTALL)
            if json_match:
                json_str = json_match.group(0)
                analysis = json.loads(json_str)
                return analysis
        except Exception as e:
            logger.error(f"Error parsing layout analysis: {e}")
        
        # Fallback with default values
        return {
            "issues": ["Potential element overlap", "Undefined positioning"],
            "suggestions": ["Use explicit coordinates for all elements", "Add spacing between elements"],
            "animation_flow": ["Break complex animations into steps", "Add wait time between steps"],
            "spacing": 1.0,
            "regions": ["UP", "DOWN", "LEFT", "RIGHT", "CENTER"]
        }
    except Exception as e:
        logger.error(f"Error in direct_analyze_layout: {e}")
        return {
            "issues": ["Analysis failed"],
            "suggestions": ["Check code manually"],
            "animation_flow": [],
            "spacing": 1.0,
            "regions": ["CENTER"]
        }

def direct_optimize_layout(code: str, prompt: str, complexity: str = "medium") -> str:
    """Optimize layout in Manim code without using agent tools."""
    try:
        # First, analyze the layout
        analysis = direct_analyze_layout(code, prompt, complexity)
        
        # Serialize the analysis for the prompt
        analysis_str = json.dumps(analysis, indent=2)
        
        response = client.chat.completions.create(
            model=llm,
            messages=[
                {"role": "system", "content": """
Optimize the layout and animation flow in Manim code. Follow these strict rules:

ELEMENT POSITIONING AND SPACING:
1. Explicitly position ALL elements with coordinates (e.g., .move_to(), .shift(), .to_edge())
2. Ensure minimum spacing of 2.0 units between all elements
3. Use screen regions effectively (UP, DOWN, LEFT, RIGHT, UL, UR, DL, DR)
4. Group related elements using VGroup and arrange them with arrange(direction, buff=1.0)
5. Add buffer around elements: .move_to(point).shift(UP*0.5) to ensure spacing
6. Use coordinate grid to map element positions: x values from -6 to 6, y values from -3.5 to 3.5
7. Shrink elements to 80% size when needed with scale(0.8)

STEP-BY-STEP ANIMATION FLOW:
1. CRITICAL: Use self.play(FadeOut(element)) to explicitly remove elements when they're no longer needed
2. DO NOT use self.clear() as it doesn't actually remove elements from the scene
3. Divide the animation into clear sequences with comments like "# Step 1: Introduction"
4. Use appropriate wait times: self.wait(0.7) for minor steps, self.wait(1.5) for new concepts
5. At the end of each major section, add: self.play(FadeOut(*[all_objects_in_current_section]))
6. Max 3-4 elements should be visible simultaneously
7. For each step, state element positions clearly in comments
8. Use sequential animations (one element at a time) rather than AnimationGroup

FIXES FOR COMMON PROBLEMS:
1. Add .to_edge(direction) to all Tex/MathTex elements
2. For Title elements, always use .to_edge(UP)
3. For equations, use .scale(0.8).next_to(previous_element, DOWN*2)
4. For diagrams, center them with .move_to(ORIGIN)
5. For graphs, explicitly set axes ranges with x_range=[-5, 5, 1], y_range=[-3, 3, 1]
6. For multiple text elements, align them with .align_to(reference, direction)
7. For explanatory text, position at the bottom with .to_edge(DOWN)
8. Before introducing new sections, add: self.play(FadeOut(*[all_current_elements]))

Preserve all mathematical content and educational purpose of the animation.
Only make changes to improve layout, positioning, and animation flow.
"""
                },
                {"role": "user", "content": f"Original code:\n\n```python\n{code}\n```\n\nOptimize the layout based on this analysis:\n{analysis_str}\n\nPrompt: {prompt}, Complexity: {complexity}\n\nReturn the optimized code that ensures a step-by-step animation with proper spacing and element removal to prevent overlaps."}
            ]
        )
        
        optimized_code = response.choices[0].message.content
        
        # Clean up the response to extract just the code
        if "```python" in optimized_code:
            optimized_code = optimized_code.split("```python", 1)[1]
        if "```" in optimized_code:
            optimized_code = optimized_code.split("```", 1)[0]
        
        return optimized_code.strip()
    except Exception as e:
        logger.error(f"Error in direct_optimize_layout: {e}")
        return code  # Return original code if optimization fails

# Add a new function to specifically check and fix positioning issues in existing code
def optimize_element_positioning(code: str, prompt: str, complexity: str = "medium") -> str:
    """Analyze and optimize element positioning in Manim code."""
    try:
        response = client.chat.completions.create(
            model=llm,
            messages=[
                {"role": "system", "content": """
You are a Manim layout expert. Review the provided code and improve element positioning and animation flow.
Focus on these critical aspects:

1. STEP-BY-STEP ANIMATION:
   - CRITICAL: Add explicit self.play(FadeOut(...)) to remove elements when they're no longer needed
   - DO NOT use self.clear() as it doesn't actually remove elements from the scene
   - Ensure only 3-4 related elements are visible at once
   - Sequence animations to show just one new element at a time
   - Use appropriate wait times: self.wait(0.7) for minor points, self.wait(1.5) for important concepts

2. POSITIONING AND SPACING:
   - Position ALL elements with explicit coordinates: move_to(), shift(), to_edge(), etc.
   - Maintain AT LEAST 2.0 units of space between elements
   - Use all screen regions effectively: UP, DOWN, LEFT, RIGHT, UL, UR, DL, DR, etc.
   - Use coordinate grid system: x values from -6 to 6, y values from -3.5 to 3.5
   - Scale elements with .scale(0.8) when needed to prevent overlap

3. ELEMENT ORGANIZATION:
   - Group related elements using VGroup and arrange them with arrange(direction, buff=1.0)
   - Position titles at the top with .to_edge(UP)
   - Position explanatory text at the bottom with .to_edge(DOWN)
   - Center diagrams with .move_to(ORIGIN)
   - For multiple text elements, use .align_to(reference, direction)

4. ELEMENT CLEANUP:
   - At the end of each section, add: self.play(FadeOut(*[all_objects_in_section]))
   - For elements that transform, use ReplacementTransform not Transform
   - Keep track of all created elements and remove them when not needed
   - Add comments before element removal: "# Remove all elements from this section"

DO NOT change the mathematical content or educational purpose of the animation.
Only modify layout, positioning, and animation flow to ensure a clear, step-by-step experience.

Return ONLY the improved code without explanations outside of code comments.
"""
                },
                {"role": "user", "content": f"Review and optimize element positioning and step-by-step flow in this Manim code:\n\n```python\n{code}\n```\n\nThe animation is about: '{prompt}' with complexity level '{complexity}'.\n\nFocus on preventing element overlap by ensuring proper spacing, explicit positioning, AND ADDING FadeOut() calls to remove elements when moving between sections. DO NOT use self.clear() since it doesn't work properly."}
            ]
        )
        
        optimized_code = response.choices[0].message.content
        
        # Clean up the response to extract just the code
        if "```python" in optimized_code:
            optimized_code = optimized_code.split("```python", 1)[1]
        if "```" in optimized_code:
            optimized_code = optimized_code.split("```", 1)[0]
        
        return optimized_code.strip()
    except Exception as e:
        logger.error(f"Error optimizing element positioning: {e}")
        return code  # Return original code if optimization fails

# Function to re-render animation with edited code
def rerender_animation(edited_code: str, quality: str = "medium_quality") -> tuple:
    """Re-render animation with user-edited code."""
    try:
        video_path = render_manim_video(edited_code, quality)
        if video_path and not video_path.startswith("Error"):
            return video_path, f"## Re-rendered Animation\n\nCode successfully rendered to video.\n\nCheck the video player for results."
        else:
            return None, f"## Error in Rendering\n\n```\n{video_path}\n```\n\nPlease check your code for errors."
    except Exception as e:
        logger.error(f"Error re-rendering animation: {e}")
        return None, f"## Error in Rendering\n\n```\n{str(e)}\n```\n\nPlease check your code for errors."

# Setup Gradio interface
def gradio_interface(prompt: str, complexity: str = "medium", quality: str = "medium_quality"):
    code, video_path, log_output = generate_animation(prompt, complexity, quality)
    if video_path and not video_path.startswith("Error"):
        return code, video_path, log_output
    else:
        return code, None, log_output

# Function to evaluate and fix Manim code
def evaluate_and_fix_manim_code(code: str, prompt: str, complexity: str = "medium") -> tuple:
    """Evaluate Manim code for errors and fix them if found."""
    try:
        # Create prompt object for context
        prompt_obj = AnimationPrompt(description=prompt, complexity=complexity)
        
        # Run evaluation through the agent
        evaluation_result = evaluation_agent.run_sync(
            f"Evaluate this Manim code for the prompt: {prompt}",
            deps=prompt_obj,
            code=code
        )
        
        # Check if we got a proper evaluation result
        if isinstance(evaluation_result, EvaluationResult):
            if evaluation_result.has_errors and evaluation_result.fixed_code:
                return evaluation_result.fixed_code, format_evaluation_results(evaluation_result)
            elif evaluation_result.has_errors:
                # If no fixed code was provided but errors exist, try direct fixing
                prompt_ctx = RunContext(deps=prompt_obj)
                fixed_code = fix_code_issues(
                    prompt_ctx, 
                    code, 
                    evaluation_result.syntax_errors,
                    {
                        "positioning_issues": evaluation_result.positioning_issues,
                        "overlap_issues": evaluation_result.overlap_issues,
                        "suggestions": evaluation_result.suggestions
                    }
                )
                return fixed_code, format_evaluation_results(evaluation_result)
            else:
                # No errors found
                return code, "## Code Evaluation\n\nNo errors or positioning issues found. Code looks good!"
        
        # Fallback to direct evaluation if agent result isn't an EvaluationResult
        return direct_evaluate_and_fix(code, prompt, complexity)
    
    except Exception as e:
        logger.error(f"Error during code evaluation: {e}")
        # If evaluation fails, return the original code
        return code, f"## Error During Evaluation\n\nCould not complete code evaluation: {str(e)}"

def direct_evaluate_and_fix(code: str, prompt: str, complexity: str = "medium") -> tuple:
    """Direct implementation of code evaluation and fixing without using agents."""
    try:
        response = client.chat.completions.create(
            model=llm,
            messages=[
                {"role": "system", "content": """
Evaluate this Manim code for errors and positioning issues. Look for:
1. Python syntax errors
2. Manim-specific errors (incorrect class usage, invalid animation methods)
3. Positioning issues (elements without explicit positioning)
4. Potential element overlaps
5. Timing and animation flow issues

If you find any issues, fix them and return both an evaluation report and the fixed code.
If no issues are found, say so and return the original code.

Format your response as:
```evaluation
[List all issues found with explanations]
```

```python
[The fixed code or original code if no issues]
```
"""
                },
                {"role": "user", "content": f"Evaluate this Manim code:\n\n```python\n{code}\n```\n\nThe animation is about: '{prompt}' with complexity level '{complexity}'.\n\nCheck for errors and positioning issues, especially element overlaps."}
            ]
        )
        
        content = response.choices[0].message.content
        
        # Extract evaluation report
        evaluation_report = ""
        if "```evaluation" in content:
            evaluation_parts = content.split("```evaluation", 1)[1].split("```", 1)
            if len(evaluation_parts) > 0:
                evaluation_report = evaluation_parts[0].strip()
        
        # Extract fixed code
        fixed_code = code  # Default to original code
        if "```python" in content:
            code_parts = content.split("```python", 1)[1].split("```", 1)
            if len(code_parts) > 0:
                potential_fixed_code = code_parts[0].strip()
                # Only use the fixed code if it's valid (contains basic Manim imports)
                if "from manim import" in potential_fixed_code or "import manim" in potential_fixed_code:
                    fixed_code = potential_fixed_code
        
        # Format the evaluation report
        if evaluation_report:
            formatted_report = f"## Code Evaluation\n\n{evaluation_report}\n\n"
            if fixed_code != code:
                formatted_report += "Issues were found and fixed in the code."
            return fixed_code, formatted_report
        else:
            return fixed_code, "## Code Evaluation\n\nNo significant issues found in the code."
    
    except Exception as e:
        logger.error(f"Error during direct evaluation: {e}")
        return code, f"## Error During Evaluation\n\nCould not complete code evaluation: {str(e)}"

def format_evaluation_results(result: EvaluationResult) -> str:
    """Format evaluation results for display."""
    output = "## Code Evaluation Results\n\n"
    
    if not result.has_errors:
        output += "βœ… No errors or positioning issues detected. Code looks good!\n\n"
        return output
    
    if result.syntax_errors:
        output += "### Syntax Errors\n\n"
        for i, error in enumerate(result.syntax_errors):
            output += f"{i+1}. {error}\n"
        output += "\n"
    
    if result.positioning_issues:
        output += "### Positioning Issues\n\n"
        for i, issue in enumerate(result.positioning_issues):
            output += f"{i+1}. {issue}\n"
        output += "\n"
    
    if result.overlap_issues:
        output += "### Potential Element Overlaps\n\n"
        for i, issue in enumerate(result.overlap_issues):
            output += f"{i+1}. {issue}\n"
        output += "\n"
    
    if result.suggestions:
        output += "### Suggestions for Improvement\n\n"
        for i, suggestion in enumerate(result.suggestions):
            output += f"{i+1}. {suggestion}\n"
        output += "\n"
    
    if result.fixed_code:
        output += "βœ… These issues have been automatically fixed in the updated code.\n"
    else:
        output += "❌ Could not automatically fix all issues. Please review the code manually.\n"
    
    return output

# Replace the Gradio interface creation with a Blocks interface for better layout control
if __name__ == "__main__":
    # Create shorter directory names for temp and output files
    # Check if we're running on Hugging Face
    is_huggingface = os.environ.get("SPACE_ID") is not None
    
    # Use appropriate directories based on environment
    if is_huggingface:
        # Use /tmp directory for HF Spaces which has write permissions
        os.makedirs("/tmp/videos", exist_ok=True)
    else:
        os.makedirs(os.path.join(os.getcwd(), "tmp"), exist_ok=True)
        os.makedirs(os.path.join(os.getcwd(), "videos"), exist_ok=True)
    
    with gr.Blocks(title="Manimation Generator", theme=gr.themes.Base()) as demo:
        gr.Markdown("# Manimation Generator")
        gr.Markdown("Generate mathematical animations from text descriptions using AI")
        
        # Add chat history component
        chat_history = gr.Chatbot(label="Conversation History", height=300)
        
        with gr.Row():
            # Left column: User inputs
            with gr.Column(scale=1):
                # Replace single prompt with tabs for initial creation and feedback
                with gr.Tabs():
                    with gr.TabItem("Create New Animation"):
                        new_prompt = gr.Textbox(
                            lines=5, 
                            placeholder="Describe a mathematical concept to animate...", 
                            label="Concept Description"
                        )
                        
                        with gr.Row():
                            complexity = gr.Radio(
                                ["simple", "medium", "complex"], 
                                value="medium", 
                                label="Complexity Level"
                            )
                            quality = gr.Radio(
                                ["low_quality", "medium_quality", "high_quality"], 
                                value="medium_quality", 
                                label="Video Quality"
                            )
                        
                        generate_btn = gr.Button("Generate Animation", variant="primary")
                    
                    with gr.TabItem("Refine Animation"):
                        feedback = gr.Textbox(
                            lines=3,
                            placeholder="Provide feedback or suggestions for the current animation...",
                            label="Your Feedback"
                        )
                        refine_btn = gr.Button("Apply Feedback", variant="secondary")
                    
                    # Add the missing "Evaluate Code" tab
                    with gr.TabItem("Evaluate Code"):
                        gr.Markdown("""
                        Check your Manim code for:
                        - Syntax errors
                        - Positioning issues
                        - Element overlaps
                        - Animation flow problems
                        """)
                        evaluate_btn = gr.Button("Check Code for Errors", variant="secondary")
                
                # Code editor (common to both tabs)
                code_output = gr.Code(
                    language="python", 
                    label="Manim Code (Editable)",
                    lines=20,
                    interactive=True
                )
                
                # Add manual rerender button
                rerender_btn = gr.Button("Re-render Current Code", variant="secondary")
            
            # Right column: Video and details
            with gr.Column(scale=1):
                video_output = gr.Video(label="Animation")
                # Uncomment the log_output component to fix the error
                log_output = gr.Markdown(label="Details")
        
        # Function to update chat history
        def update_chat_history(history, user_message, bot_message, video_path):
            history = history or []
            history.append((user_message, None))  # User message
            if video_path and not isinstance(video_path, str):
                # If we have a valid video, include it in the message
                bot_message = f"{bot_message}\n\n![Animation]({video_path})"
            history.append((None, bot_message))  # Bot message
            return history
        
        # Function wrappers for UI updates with chat history
        def generate_and_update_chat(prompt, complexity, quality, history):
            code, video_path, log = generate_animation(prompt, complexity, quality)
            new_history = update_chat_history(
                history, 
                f"**Create animation:** {prompt}",
                f"**Generated animation:** {memory.current_scenario.title if memory.current_scenario else 'Animation'}", 
                video_path
            )
            return code, video_path, log, new_history
        
        def refine_and_update_chat(code, feedback_text, quality, history):
            refined_code, video_path, log = refine_animation(code, feedback_text, quality)
            new_history = update_chat_history(
                history, 
                f"**Feedback:** {feedback_text}", 
                f"**Refined animation based on feedback**", 
                video_path
            )
            return refined_code, video_path, log, new_history
        
        def rerender_and_update_chat(code, quality, history):
            video_path, log = rerender_animation(code, quality)
            new_history = update_chat_history(
                history, 
                "**Re-rendered current code**", 
                "**Re-rendering complete**", 
                video_path
            )
            return video_path, log, new_history
        
        def evaluate_and_update_chat(code, history):
            # Extract prompt from memory
            prompt = memory.history[-1]["prompt"] if memory.history else "Mathematical animation"
            complexity = "medium"  # Default complexity
            
            # Evaluate the code
            fixed_code, evaluation_report = evaluate_and_fix_manim_code(code, prompt, complexity)
            
            new_history = update_chat_history(
                history, 
                "**Request:** Check code for errors and positioning issues", 
                f"**Evaluation complete**", 
                None
            )
            
            return fixed_code, evaluation_report, new_history
        
        # Connect the components to the function
        generate_btn.click(
            fn=generate_and_update_chat,
            inputs=[new_prompt, complexity, quality, chat_history],
            outputs=[code_output, video_output, log_output, chat_history]
        )
        
        refine_btn.click(
            fn=refine_and_update_chat,
            inputs=[code_output, feedback, quality, chat_history],
            outputs=[code_output, video_output, log_output, chat_history]
        )
        
        rerender_btn.click(
            fn=rerender_and_update_chat,
            inputs=[code_output, quality, chat_history],
            outputs=[video_output, log_output, chat_history]
        )
        
        evaluate_btn.click(
            fn=evaluate_and_update_chat,
            inputs=[code_output, chat_history],
            outputs=[code_output, log_output, chat_history]
        )
        
        # Add footer with social media links
        with gr.Row(equal_height=True):
            gr.Markdown("""
                ### Connect With Us
                
                [<img src="https://github.githubassets.com/images/modules/logos_page/GitHub-Mark.png" width="30"/> GitHub](https://github.com/khanhthanhdev/Text2Video) | 
                [<img src="https://upload.wikimedia.org/wikipedia/commons/thumb/0/05/Facebook_Logo_%282019%29.png/600px-Facebook_Logo_%282019%29.png" width="30"/> Facebook](https://facebook.com/khanhthanhdev)
                
                ---
                *Created with Manim and AI - Share your mathematical animations with the world!*
            """)
    
    demo.launch(server_name="0.0.0.0", server_port=7860)