Spaces:
Running
Running
Upload 13 files
Browse files- .env +1 -0
- .gitattributes +35 -35
- .gitignore +51 -0
- Dockerfile +56 -0
- README.md +11 -11
- ai_agent.py +801 -0
- architecture_plan.md +63 -0
- code_cleaner.py +184 -0
- config.py +129 -0
- main.py +307 -0
- manim_prompts.py +85 -0
- requirements.txt +6 -0
- simple_manim_agent.py +329 -0
.env
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
TOGETHER_API_KEY = cee1393e4d4e7a94121882052a03f30a1d51f5dbd251140844ec616e17f60e9b
|
.gitattributes
CHANGED
@@ -1,35 +1,35 @@
|
|
1 |
-
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
-
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
-
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
-
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
-
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
-
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
-
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
-
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
-
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
-
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
-
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
-
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
-
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
-
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
-
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
-
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
-
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
-
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
-
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
-
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
-
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
-
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
-
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
-
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
-
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
-
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
-
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
-
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
-
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
-
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
-
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
-
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
-
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
-
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
-
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
.gitignore
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Environment variables
|
2 |
+
.env
|
3 |
+
.env.*
|
4 |
+
|
5 |
+
# Python
|
6 |
+
__pycache__/
|
7 |
+
*.py[cod]
|
8 |
+
*$py.class
|
9 |
+
*.so
|
10 |
+
.Python
|
11 |
+
build/
|
12 |
+
develop-eggs/
|
13 |
+
dist/
|
14 |
+
downloads/
|
15 |
+
eggs/
|
16 |
+
.eggs/
|
17 |
+
lib/
|
18 |
+
lib64/
|
19 |
+
parts/
|
20 |
+
sdist/
|
21 |
+
var/
|
22 |
+
wheels/
|
23 |
+
*.egg-info/
|
24 |
+
.installed.cfg
|
25 |
+
*.egg
|
26 |
+
|
27 |
+
# Virtual Environment
|
28 |
+
venv/
|
29 |
+
env/
|
30 |
+
ENV/
|
31 |
+
.venv/
|
32 |
+
|
33 |
+
# IDE
|
34 |
+
.idea/
|
35 |
+
.vscode/
|
36 |
+
*.swp
|
37 |
+
*.swo
|
38 |
+
|
39 |
+
# OS
|
40 |
+
.DS_Store
|
41 |
+
Thumbs.db
|
42 |
+
|
43 |
+
# Manim output
|
44 |
+
media/
|
45 |
+
media/videos/
|
46 |
+
*.mp4
|
47 |
+
|
48 |
+
# Ignore GIFs except in SpatialReasoningTest
|
49 |
+
*.gif
|
50 |
+
!SpatialReasoningTest/*.gif
|
51 |
+
|
Dockerfile
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM python:3.12-slim
|
2 |
+
|
3 |
+
# Install all dependencies in one layer
|
4 |
+
RUN apt-get update && apt-get install -y --no-install-recommends \
|
5 |
+
gcc \
|
6 |
+
libffi-dev \
|
7 |
+
curl \
|
8 |
+
ca-certificates \
|
9 |
+
python3-dev \
|
10 |
+
pkg-config \
|
11 |
+
libcairo2-dev \
|
12 |
+
libpango1.0-dev \
|
13 |
+
ffmpeg \
|
14 |
+
texlive-full \
|
15 |
+
dvisvgm \
|
16 |
+
fonts-dejavu \
|
17 |
+
&& apt-get clean \
|
18 |
+
&& rm -rf /var/lib/apt/lists/* \
|
19 |
+
&& which dvisvgm
|
20 |
+
|
21 |
+
WORKDIR /app
|
22 |
+
|
23 |
+
# Install uv for faster pip operations
|
24 |
+
ADD https://astral.sh/uv/install.sh /uv-installer.sh
|
25 |
+
RUN sh /uv-installer.sh && rm /uv-installer.sh
|
26 |
+
ENV PATH="/root/.local/bin:${PATH}"
|
27 |
+
|
28 |
+
# Copy virtual environment and project files
|
29 |
+
COPY requirements.txt .
|
30 |
+
|
31 |
+
|
32 |
+
# Activate the existing venv and install any missing packages
|
33 |
+
RUN uv venv /app/manimations \
|
34 |
+
&& . /app/manimations/bin/activate \
|
35 |
+
&& uv pip install --no-cache -r requirements.txt \
|
36 |
+
&& uv pip install --no-cache pycairo pangocffi manim
|
37 |
+
|
38 |
+
ENV PATH="/app/manimations/bin:${PATH}"
|
39 |
+
COPY *.py /app/
|
40 |
+
# Set environment variables
|
41 |
+
ENV PYTHONPATH=/app
|
42 |
+
ENV MPLBACKEND=Agg
|
43 |
+
ENV GRADIO_SERVER_NAME=0.0.0.0
|
44 |
+
ENV GRADIO_SERVER_PORT=7860
|
45 |
+
|
46 |
+
# Create directory for generated videos
|
47 |
+
RUN mkdir -p /app/generated_videos
|
48 |
+
|
49 |
+
# Copy .env file
|
50 |
+
COPY .env /app/.env
|
51 |
+
|
52 |
+
# Expose the port for the Gradio interface
|
53 |
+
EXPOSE 7860
|
54 |
+
|
55 |
+
# Command to run the application with the virtual environment
|
56 |
+
CMD ["/app/manimations/bin/python", "ai_agent.py"]
|
README.md
CHANGED
@@ -1,11 +1,11 @@
|
|
1 |
-
---
|
2 |
-
title: Text2manim
|
3 |
-
emoji: 📊
|
4 |
-
colorFrom: red
|
5 |
-
colorTo: indigo
|
6 |
-
sdk: docker
|
7 |
-
pinned: false
|
8 |
-
short_description: Text to Math, Physic video using Manim and AI agent
|
9 |
-
---
|
10 |
-
|
11 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
+
---
|
2 |
+
title: Text2manim
|
3 |
+
emoji: 📊
|
4 |
+
colorFrom: red
|
5 |
+
colorTo: indigo
|
6 |
+
sdk: docker
|
7 |
+
pinned: false
|
8 |
+
short_description: Text to Math, Physic video using Manim and AI agent
|
9 |
+
---
|
10 |
+
|
11 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
ai_agent.py
ADDED
@@ -0,0 +1,801 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
AI Agent for generating Manim animations from text prompts using pydantic-ai.
|
3 |
+
"""
|
4 |
+
|
5 |
+
import os
|
6 |
+
from typing import List, Optional
|
7 |
+
from dotenv import load_dotenv
|
8 |
+
import gradio as gr
|
9 |
+
from pydantic_ai.models.openai import OpenAIModel
|
10 |
+
from pydantic_ai.providers.openai import OpenAIProvider
|
11 |
+
from pydantic_ai import Agent, RunContext
|
12 |
+
from pydantic import BaseModel, Field
|
13 |
+
import openai
|
14 |
+
import tempfile
|
15 |
+
import subprocess
|
16 |
+
import logging
|
17 |
+
from datetime import datetime
|
18 |
+
import shutil
|
19 |
+
import time
|
20 |
+
from io import StringIO
|
21 |
+
import re
|
22 |
+
import json
|
23 |
+
import logging
|
24 |
+
|
25 |
+
|
26 |
+
# Configure logging
|
27 |
+
logging.basicConfig(level=logging.INFO)
|
28 |
+
logger = logging.getLogger(__name__)
|
29 |
+
|
30 |
+
# Load environment variables
|
31 |
+
load_dotenv()
|
32 |
+
llm = "deepseek-ai/DeepSeek-V3"
|
33 |
+
|
34 |
+
# Define Pydantic models for structured data
|
35 |
+
class AnimationPrompt(BaseModel):
|
36 |
+
"""User input for animation generation."""
|
37 |
+
description: str = Field(..., description="Text description of the mathematical or physics concept to animate")
|
38 |
+
complexity: str = Field("medium", description="Desired complexity of the animation")
|
39 |
+
|
40 |
+
class AnimationScenario(BaseModel):
|
41 |
+
"""Structured scenario for animation generation."""
|
42 |
+
title: str = Field(..., description="Title of the animation")
|
43 |
+
objects: List[str] = Field(..., description="Mathematical objects to include in the animation")
|
44 |
+
transformations: List[str] = Field(..., description="Transformations to apply to the objects")
|
45 |
+
equations: Optional[List[str]] = Field(None, description="Mathematical equations to visualize")
|
46 |
+
|
47 |
+
class AnimationResult(BaseModel):
|
48 |
+
"""Result of animation generation."""
|
49 |
+
code: str = Field(..., description="Generated Manim code")
|
50 |
+
video_path: str = Field(..., description="Path to the generated video file")
|
51 |
+
|
52 |
+
model = OpenAIModel(
|
53 |
+
'deepseek-ai/DeepSeek-V3',
|
54 |
+
provider=OpenAIProvider(
|
55 |
+
base_url='https://api.together.xyz/v1', api_key=os.environ.get('TOGETHER_API_KEY')
|
56 |
+
),
|
57 |
+
)
|
58 |
+
# Create the agent with a static system prompt
|
59 |
+
manim_agent = Agent(
|
60 |
+
model, # or use Together API as needed
|
61 |
+
deps_type=AnimationPrompt, # Use AnimationPrompt as dependency type
|
62 |
+
system_prompt=(
|
63 |
+
"You are a specialized AI agent for creating mathematical animations. "
|
64 |
+
"Your goal is to convert user descriptions into precise Manim code "
|
65 |
+
"that visualizes mathematical and physics concepts clearly and elegantly."
|
66 |
+
),
|
67 |
+
)
|
68 |
+
|
69 |
+
# Configure OpenAI client to use Together API
|
70 |
+
client = openai.OpenAI(
|
71 |
+
api_key=os.environ.get("TOGETHER_API_KEY"),
|
72 |
+
base_url="https://api.together.xyz/v1",
|
73 |
+
)
|
74 |
+
|
75 |
+
# Add dynamic system prompts
|
76 |
+
@manim_agent.system_prompt
|
77 |
+
def add_complexity_guidance(ctx: RunContext[AnimationPrompt]) -> str:
|
78 |
+
"""Add guidance based on requested complexity."""
|
79 |
+
complexity = ctx.deps.complexity
|
80 |
+
if complexity == "simple":
|
81 |
+
return (
|
82 |
+
"Create simple, easy-to-understand animations with minimal elements. "
|
83 |
+
"Focus on clarity over sophistication."
|
84 |
+
)
|
85 |
+
elif complexity == "complex":
|
86 |
+
return (
|
87 |
+
"Create sophisticated animations with multiple mathematical elements and transformations. "
|
88 |
+
"You can use advanced Manim features and complex mathematical concepts."
|
89 |
+
)
|
90 |
+
else: # medium
|
91 |
+
return (
|
92 |
+
"Balance clarity and sophistication in your animations. "
|
93 |
+
"Include enough detail to illustrate the concept clearly without overwhelming the viewer."
|
94 |
+
)
|
95 |
+
|
96 |
+
@manim_agent.system_prompt
|
97 |
+
def add_timestamp() -> str:
|
98 |
+
"""Add a timestamp to the system prompt."""
|
99 |
+
return f"Current date and time: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}"
|
100 |
+
|
101 |
+
@manim_agent.tool
|
102 |
+
def extract_scenario(ctx: RunContext[AnimationPrompt]) -> AnimationScenario:
|
103 |
+
"""Extract a structured animation scenario from a text prompt."""
|
104 |
+
prompt = ctx.deps # Get the AnimationPrompt from context
|
105 |
+
|
106 |
+
# Use Together API with OpenAI client
|
107 |
+
response = client.chat.completions.create(
|
108 |
+
model=llm,
|
109 |
+
messages=[
|
110 |
+
{"role": "system", "content": """
|
111 |
+
Create a storyboard for a math/physics educational animation. Focus on making concepts clear for beginners.
|
112 |
+
|
113 |
+
Respond with a JSON object containing:
|
114 |
+
- title: A clear, engaging title
|
115 |
+
- objects: Mathematical objects to include (e.g., "coordinate_plane", "function_graph")
|
116 |
+
- transformations: Animation types to use (e.g., "fade_in", "transform")
|
117 |
+
- equations: Mathematical equations to feature (can be null)
|
118 |
+
- storyboard: 5-7 sections, each with:
|
119 |
+
* section_name: Section name (e.g., "Introduction")
|
120 |
+
* time_range: Timestamp range (e.g., "0:00-2:00")
|
121 |
+
* narration: What the narrator says
|
122 |
+
* visuals: What appears on screen
|
123 |
+
* animations: Specific animations
|
124 |
+
* key_points: 1-2 main takeaways
|
125 |
+
|
126 |
+
Include: introduction, simple explanation, detailed walkthrough, examples, and conclusion.
|
127 |
+
|
128 |
+
Use everyday analogies, define technical terms, and focus on visualization.
|
129 |
+
|
130 |
+
Only respond with the JSON object, nothing else.
|
131 |
+
"""},
|
132 |
+
{"role": "user", "content": f"Create an animation storyboard for: '{prompt.description}'. "
|
133 |
+
f"Complexity level: {prompt.complexity}. Make it beginner-friendly "
|
134 |
+
f"with clear explanations and visual examples."}
|
135 |
+
]
|
136 |
+
)
|
137 |
+
content = response.choices[0].message.content
|
138 |
+
|
139 |
+
try:
|
140 |
+
# Extract JSON from response
|
141 |
+
json_match = re.search(r'\{.*\}', content, re.DOTALL)
|
142 |
+
if json_match:
|
143 |
+
json_str = json_match.group(0)
|
144 |
+
scenario_dict = json.loads(json_str)
|
145 |
+
|
146 |
+
# Get basic scenario info
|
147 |
+
title = scenario_dict.get('title', f"{prompt.description.capitalize()} Visualization")
|
148 |
+
objects = scenario_dict.get('objects', [])
|
149 |
+
transformations = scenario_dict.get('transformations', [])
|
150 |
+
equations = scenario_dict.get('equations', None)
|
151 |
+
|
152 |
+
# Store the storyboard in logger
|
153 |
+
if 'storyboard' in scenario_dict:
|
154 |
+
logger.info(f"Generated storyboard: {json.dumps(scenario_dict['storyboard'], indent=2)}")
|
155 |
+
|
156 |
+
return AnimationScenario(
|
157 |
+
title=title,
|
158 |
+
objects=objects,
|
159 |
+
transformations=transformations,
|
160 |
+
equations=equations
|
161 |
+
)
|
162 |
+
except Exception as e:
|
163 |
+
logger.error(f"Error parsing scenario JSON: {e}")
|
164 |
+
|
165 |
+
# Fallback with default values
|
166 |
+
return AnimationScenario(
|
167 |
+
title=f"{prompt.description.capitalize()} Visualization",
|
168 |
+
objects=["circle", "text", "coordinate_system"],
|
169 |
+
transformations=["creation", "transformation", "highlight"],
|
170 |
+
equations=None
|
171 |
+
)
|
172 |
+
|
173 |
+
# Also simplify extract_scenario_direct with the same approach
|
174 |
+
def extract_scenario_direct(prompt: str, complexity: str = "medium") -> AnimationScenario:
|
175 |
+
"""Direct implementation of scenario extraction without using RunContext."""
|
176 |
+
# Use Together API with OpenAI client
|
177 |
+
response = client.chat.completions.create(
|
178 |
+
model=llm,
|
179 |
+
messages=[
|
180 |
+
{"role": "system", "content": """
|
181 |
+
Create a storyboard for a math/physics educational animation. Focus on making concepts clear for beginners.
|
182 |
+
|
183 |
+
Respond with a JSON object containing:
|
184 |
+
- title: A clear, engaging title
|
185 |
+
- objects: Mathematical objects to include (e.g., "coordinate_plane", "function_graph")
|
186 |
+
- transformations: Animation types to use (e.g., "fade_in", "transform")
|
187 |
+
- equations: Mathematical equations to feature (can be null)
|
188 |
+
- storyboard: 5-7 sections, each with:
|
189 |
+
* section_name: Section name (e.g., "Introduction")
|
190 |
+
* time_range: Timestamp range (e.g., "0:00-2:00")
|
191 |
+
* narration: What the narrator says
|
192 |
+
* visuals: What appears on screen
|
193 |
+
* animations: Specific animations
|
194 |
+
* key_points: 1-2 main takeaways
|
195 |
+
|
196 |
+
Include: introduction, simple explanation, detailed walkthrough, examples, and conclusion.
|
197 |
+
|
198 |
+
Use everyday analogies, define technical terms, and focus on visualization.
|
199 |
+
|
200 |
+
Only respond with the JSON object, nothing else.
|
201 |
+
"""},
|
202 |
+
{"role": "user", "content": f"Create an animation storyboard for: '{prompt}'. "
|
203 |
+
f"Complexity level: {complexity}. Make it beginner-friendly "
|
204 |
+
f"with clear explanations and visual examples."}
|
205 |
+
]
|
206 |
+
)
|
207 |
+
content = response.choices[0].message.content
|
208 |
+
|
209 |
+
try:
|
210 |
+
# Extract JSON from response
|
211 |
+
json_match = re.search(r'\{.*\}', content, re.DOTALL)
|
212 |
+
if json_match:
|
213 |
+
json_str = json_match.group(0)
|
214 |
+
scenario_dict = json.loads(json_str)
|
215 |
+
|
216 |
+
# Get basic scenario info
|
217 |
+
title = scenario_dict.get('title', f"{prompt.capitalize()} Visualization")
|
218 |
+
objects = scenario_dict.get('objects', [])
|
219 |
+
transformations = scenario_dict.get('transformations', [])
|
220 |
+
equations = scenario_dict.get('equations', None)
|
221 |
+
|
222 |
+
# Store the storyboard in logger
|
223 |
+
if 'storyboard' in scenario_dict:
|
224 |
+
logger.info(f"Generated storyboard: {json.dumps(scenario_dict['storyboard'], indent=2)}")
|
225 |
+
|
226 |
+
return AnimationScenario(
|
227 |
+
title=title,
|
228 |
+
objects=objects,
|
229 |
+
transformations=transformations,
|
230 |
+
equations=equations
|
231 |
+
)
|
232 |
+
except Exception as e:
|
233 |
+
logger.error(f"Error parsing scenario JSON: {e}")
|
234 |
+
|
235 |
+
# Fallback based on keywords in prompt
|
236 |
+
objects = ["circle", "text", "coordinate_system"]
|
237 |
+
transformations = ["creation", "transformation", "highlight"]
|
238 |
+
equations = None
|
239 |
+
|
240 |
+
if any(kw in prompt.lower() for kw in ["triangle", "pythagorean"]):
|
241 |
+
objects = ["triangle", "square", "text"]
|
242 |
+
transformations = ["creation", "area_calculation"]
|
243 |
+
equations = ["a^2 + b^2 = c^2"]
|
244 |
+
elif any(kw in prompt.lower() for kw in ["calculus", "derivative", "integral"]):
|
245 |
+
objects = ["function_graph", "tangent_line", "area"]
|
246 |
+
transformations = ["drawing", "zoom", "fill"]
|
247 |
+
equations = ["f'(x) = \\lim_{h \\to 0}\\frac{f(x+h) - f(x)}{h}"]
|
248 |
+
|
249 |
+
return AnimationScenario(
|
250 |
+
title=f"{prompt.capitalize()} Visualization",
|
251 |
+
objects=objects,
|
252 |
+
transformations=transformations,
|
253 |
+
equations=equations
|
254 |
+
)
|
255 |
+
|
256 |
+
@manim_agent.tool
|
257 |
+
def generate_code(ctx: RunContext[AnimationPrompt], scenario: AnimationScenario) -> str:
|
258 |
+
"""Generate Manim code from a structured scenario."""
|
259 |
+
# Use OpenAI to generate Manim code
|
260 |
+
objects_str = ", ".join(scenario.objects)
|
261 |
+
transformations_str = ", ".join(scenario.transformations)
|
262 |
+
equations_str = ", ".join(scenario.equations) if scenario.equations else "No equations"
|
263 |
+
|
264 |
+
prompt_description = ctx.deps.description # Access the original prompt
|
265 |
+
response = client.chat.completions.create(
|
266 |
+
model=llm,
|
267 |
+
messages=[
|
268 |
+
{"role": "system", "content": "Generate Manim code for mathematical animations."},
|
269 |
+
{"role": "user", "content": f"Create Manim code for an animation titled '{scenario.title}' "
|
270 |
+
f"with objects: {objects_str}, transformations: {transformations_str}, "
|
271 |
+
f"and equations: {equations_str}. Original request: '{prompt_description}'"}
|
272 |
+
]
|
273 |
+
)
|
274 |
+
return response.choices[0].message.content
|
275 |
+
|
276 |
+
@manim_agent.tool_plain
|
277 |
+
def render_animation(code: str, quality="medium_quality") -> str:
|
278 |
+
"""Render Manim code into a video. This doesn't need the context."""
|
279 |
+
return render_manim_video(code, quality)
|
280 |
+
|
281 |
+
def render_manim_video(code, quality="medium_quality"):
|
282 |
+
try:
|
283 |
+
temp_dir = tempfile.mkdtemp()
|
284 |
+
script_path = os.path.join(temp_dir, "manim_script.py")
|
285 |
+
|
286 |
+
with open(script_path, "w") as f:
|
287 |
+
f.write(code)
|
288 |
+
|
289 |
+
class_name = None
|
290 |
+
for line in code.split("\n"):
|
291 |
+
if line.startswith("class ") and "Scene" in line:
|
292 |
+
class_name = line.split("class ")[1].split("(")[0].strip()
|
293 |
+
break
|
294 |
+
|
295 |
+
if not class_name:
|
296 |
+
return "Error: Could not identify the Scene class in the generated code."
|
297 |
+
|
298 |
+
if quality == "high_quality":
|
299 |
+
command = ["manim", "-qh", script_path, class_name]
|
300 |
+
quality_dir = "1080p60"
|
301 |
+
elif quality == "low_quality":
|
302 |
+
command = ["manim", "-ql", script_path, class_name]
|
303 |
+
quality_dir = "480p15"
|
304 |
+
else:
|
305 |
+
command = ["manim", "-qm", script_path, class_name]
|
306 |
+
quality_dir = "720p30"
|
307 |
+
|
308 |
+
logger.info(f"Executing command: {' '.join(command)}")
|
309 |
+
|
310 |
+
result = subprocess.run(command, cwd=temp_dir, capture_output=True, text=True)
|
311 |
+
|
312 |
+
logger.info(f"Manim stdout: {result.stdout}")
|
313 |
+
logger.error(f"Manim stderr: {result.stderr}")
|
314 |
+
|
315 |
+
if result.returncode != 0:
|
316 |
+
logger.error(f"Manim execution failed: {result.stderr}")
|
317 |
+
return f"Error rendering video: {result.stderr}"
|
318 |
+
|
319 |
+
media_dir = os.path.join(temp_dir, "media")
|
320 |
+
videos_dir = os.path.join(media_dir, "videos")
|
321 |
+
|
322 |
+
if not os.path.exists(videos_dir):
|
323 |
+
return "Error: No video was generated. Check if Manim is installed correctly."
|
324 |
+
|
325 |
+
scene_dirs = [d for d in os.listdir(videos_dir) if os.path.isdir(os.path.join(videos_dir, d))]
|
326 |
+
|
327 |
+
if not scene_dirs:
|
328 |
+
return "Error: No scene directory found in the output."
|
329 |
+
|
330 |
+
scene_dir = max([os.path.join(videos_dir, d) for d in scene_dirs], key=os.path.getctime)
|
331 |
+
|
332 |
+
mp4_files = [f for f in os.listdir(os.path.join(scene_dir, quality_dir)) if f.endswith(".mp4")]
|
333 |
+
|
334 |
+
if not mp4_files:
|
335 |
+
return "Error: No MP4 file was generated."
|
336 |
+
|
337 |
+
video_file = max([os.path.join(scene_dir, quality_dir, f) for f in mp4_files], key=os.path.getctime)
|
338 |
+
|
339 |
+
output_dir = os.path.join(os.getcwd(), "generated_videos")
|
340 |
+
os.makedirs(output_dir, exist_ok=True)
|
341 |
+
|
342 |
+
timestamp = int(time.time())
|
343 |
+
output_file = os.path.join(output_dir, f"manim_video_{timestamp}.mp4")
|
344 |
+
|
345 |
+
shutil.copy2(video_file, output_file)
|
346 |
+
|
347 |
+
logger.info(f"Video generated: {output_file}")
|
348 |
+
|
349 |
+
return output_file
|
350 |
+
|
351 |
+
except Exception as e:
|
352 |
+
logger.error(f"Error rendering video: {e}")
|
353 |
+
return f"Error: {str(e)}"
|
354 |
+
finally:
|
355 |
+
try:
|
356 |
+
shutil.rmtree(temp_dir)
|
357 |
+
except Exception as e:
|
358 |
+
logger.error(f"Error cleaning up temporary directory: {e}")
|
359 |
+
|
360 |
+
def format_log_output(scenario: AnimationScenario, code: str) -> str:
|
361 |
+
"""Format scenario and code for display in UI."""
|
362 |
+
log_output = f"## Animation Scenario\n\n"
|
363 |
+
log_output += f"**Title:** {scenario.title}\n\n"
|
364 |
+
|
365 |
+
# Check if we have a storyboard in the logger
|
366 |
+
import json
|
367 |
+
import re
|
368 |
+
from io import StringIO
|
369 |
+
import logging
|
370 |
+
|
371 |
+
# Create a string buffer to capture log output
|
372 |
+
log_buffer = StringIO()
|
373 |
+
log_handler = logging.StreamHandler(log_buffer)
|
374 |
+
logger.addHandler(log_handler)
|
375 |
+
|
376 |
+
# Extract storyboard from logs if possible
|
377 |
+
storyboard = None
|
378 |
+
log_handler.flush()
|
379 |
+
logs = log_buffer.getvalue()
|
380 |
+
logger.removeHandler(log_handler)
|
381 |
+
|
382 |
+
json_match = re.search(r'Generated storyboard: (\[.*\])', logs)
|
383 |
+
if json_match:
|
384 |
+
try:
|
385 |
+
storyboard_str = json_match.group(1)
|
386 |
+
storyboard = json.loads(storyboard_str)
|
387 |
+
except:
|
388 |
+
storyboard = None
|
389 |
+
|
390 |
+
# If storyboard exists, display it
|
391 |
+
if storyboard:
|
392 |
+
log_output += f"## Animation Storyboard\n\n"
|
393 |
+
for i, section in enumerate(storyboard):
|
394 |
+
log_output += f"### {i+1}. {section.get('section_name', 'Section')}\n"
|
395 |
+
log_output += f"**Time:** {section.get('time_range', 'N/A')}\n\n"
|
396 |
+
log_output += f"**Narration:** {section.get('narration', '')}\n\n"
|
397 |
+
log_output += f"**Visuals:** {section.get('visuals', '')}\n\n"
|
398 |
+
log_output += f"**Animations:** {', '.join(section.get('animations', []))}\n\n"
|
399 |
+
|
400 |
+
if 'key_points' in section and section['key_points']:
|
401 |
+
log_output += f"**Key Points:**\n"
|
402 |
+
if isinstance(section['key_points'], list):
|
403 |
+
for point in section['key_points']:
|
404 |
+
log_output += f"- {point}\n"
|
405 |
+
else:
|
406 |
+
log_output += f"{section['key_points']}\n"
|
407 |
+
|
408 |
+
log_output += "---\n\n"
|
409 |
+
|
410 |
+
# Continue with regular output
|
411 |
+
log_output += f"**Mathematical Objects:**\n"
|
412 |
+
for obj in scenario.objects:
|
413 |
+
log_output += f"- {obj}\n"
|
414 |
+
|
415 |
+
log_output += f"\n**Transformations:**\n"
|
416 |
+
for transform in scenario.transformations:
|
417 |
+
log_output += f"- {transform}\n"
|
418 |
+
|
419 |
+
if scenario.equations:
|
420 |
+
log_output += f"\n**Equations:**\n"
|
421 |
+
for eq in scenario.equations:
|
422 |
+
log_output += f"- {eq}\n"
|
423 |
+
|
424 |
+
log_output += f"\n## Generated Manim Code\n\n```python\n{code}\n```"
|
425 |
+
|
426 |
+
return log_output
|
427 |
+
|
428 |
+
# Add a memory class to store conversation history
|
429 |
+
class ConversationMemory:
|
430 |
+
def __init__(self):
|
431 |
+
self.history = []
|
432 |
+
self.current_scenario = None
|
433 |
+
self.current_code = None
|
434 |
+
|
435 |
+
def add_interaction(self, prompt, scenario, code, video_path):
|
436 |
+
self.history.append({
|
437 |
+
"prompt": prompt,
|
438 |
+
"scenario": scenario,
|
439 |
+
"code": code,
|
440 |
+
"video_path": video_path,
|
441 |
+
"timestamp": datetime.now().isoformat()
|
442 |
+
})
|
443 |
+
self.current_scenario = scenario
|
444 |
+
self.current_code = code
|
445 |
+
|
446 |
+
def get_context_for_refinement(self):
|
447 |
+
if not self.history:
|
448 |
+
return ""
|
449 |
+
|
450 |
+
# Construct context from the last interaction
|
451 |
+
last = self.history[-1]
|
452 |
+
context = f"Previous prompt: {last['prompt']}\n"
|
453 |
+
if self.current_scenario and hasattr(self.current_scenario, 'title'):
|
454 |
+
context += f"Current animation title: {self.current_scenario.title}\n"
|
455 |
+
return context
|
456 |
+
|
457 |
+
# Initialize the memory
|
458 |
+
memory = ConversationMemory()
|
459 |
+
|
460 |
+
# Function to refine animation based on feedback
|
461 |
+
def refine_animation(code: str, feedback: str, quality: str = "medium_quality") -> tuple:
|
462 |
+
"""Refine animation based on user feedback."""
|
463 |
+
try:
|
464 |
+
# Get context from memory
|
465 |
+
context = memory.get_context_for_refinement()
|
466 |
+
|
467 |
+
# Use LLM to refine the code based on feedback
|
468 |
+
response = client.chat.completions.create(
|
469 |
+
model=llm,
|
470 |
+
messages=[
|
471 |
+
{"role": "system", "content": """
|
472 |
+
You are a Manim code expert. Your task is to refine animation code based on user feedback.
|
473 |
+
Keep the overall structure and purpose of the animation, but implement the changes requested.
|
474 |
+
Make sure the code remains valid and follows Manim best practices.
|
475 |
+
|
476 |
+
IMPORTANT REQUIREMENTS:
|
477 |
+
1. Only return the complete, corrected Manim code
|
478 |
+
2. Ensure class name and structure remains consistent
|
479 |
+
3. All changes must be compatible with Manim Community edition
|
480 |
+
4. Do not explain your changes in comments outside of helpful inline comments
|
481 |
+
"""},
|
482 |
+
{"role": "user", "content": f"Here is the current Manim animation code:\n\n```python\n{code}\n```\n\n{context}\nPlease refine this code based on this feedback: \"{feedback}\"\n\nReturn only the improved code."}
|
483 |
+
]
|
484 |
+
)
|
485 |
+
|
486 |
+
refined_code = response.choices[0].message.content.strip()
|
487 |
+
|
488 |
+
# Remove any markdown code formatting if present
|
489 |
+
if refined_code.startswith("```python"):
|
490 |
+
refined_code = refined_code.split("```python", 1)[1]
|
491 |
+
if refined_code.endswith("```"):
|
492 |
+
refined_code = refined_code.rsplit("```", 1)[0]
|
493 |
+
|
494 |
+
refined_code = refined_code.strip()
|
495 |
+
|
496 |
+
# Render the refined code
|
497 |
+
video_path = render_manim_video(refined_code, quality)
|
498 |
+
|
499 |
+
if video_path and not video_path.startswith("Error"):
|
500 |
+
# Update memory with refined code
|
501 |
+
if memory.current_scenario:
|
502 |
+
memory.current_code = refined_code
|
503 |
+
|
504 |
+
return refined_code, video_path, f"## Refined Animation\n\nFeedback incorporated: \"{feedback}\"\n\nAnimation successfully rendered."
|
505 |
+
else:
|
506 |
+
return refined_code, None, f"## Error in Rendering\n\n```\n{video_path}\n```\n\nPlease check your code for errors."
|
507 |
+
|
508 |
+
except Exception as e:
|
509 |
+
logger.error(f"Error refining animation: {e}")
|
510 |
+
return code, None, f"## Error in Refinement\n\n```\n{str(e)}\n```\n\nPlease try again with different feedback."
|
511 |
+
|
512 |
+
# Function to process user request
|
513 |
+
def generate_animation(prompt: str, complexity: str = "medium", quality: str = "medium_quality") -> tuple:
|
514 |
+
"""Generate an animation from a text prompt."""
|
515 |
+
try:
|
516 |
+
# Create prompt object with complexity
|
517 |
+
prompt_obj = AnimationPrompt(description=prompt, complexity=complexity)
|
518 |
+
|
519 |
+
# Run the agent in a way that it will use all necessary tools
|
520 |
+
result = manim_agent.run_sync(
|
521 |
+
f"Generate an animation from this description: {prompt}. "
|
522 |
+
f"First, extract the key elements of the scenario. Then, generate "
|
523 |
+
f"the Manim code for the animation. Finally, render the animation.",
|
524 |
+
deps=prompt_obj
|
525 |
+
)
|
526 |
+
|
527 |
+
# As a fallback, we'll use the direct methods
|
528 |
+
scenario = extract_scenario_direct(prompt, complexity)
|
529 |
+
|
530 |
+
# Fix: Use generate_code_direct instead of generate_code
|
531 |
+
# generate_code is an agent tool that requires a RunContext
|
532 |
+
code = generate_code_direct(prompt, scenario, complexity)
|
533 |
+
|
534 |
+
video_path = render_manim_video(code, quality) # Use the new render function
|
535 |
+
|
536 |
+
log_output = format_log_output(scenario, code)
|
537 |
+
|
538 |
+
# Store in memory
|
539 |
+
memory.add_interaction(prompt, scenario, code, video_path)
|
540 |
+
|
541 |
+
return code, video_path, log_output
|
542 |
+
except Exception as e:
|
543 |
+
logger.error(f"Error generating animation: {e}")
|
544 |
+
return f"Error: {str(e)}", None, f"Error occurred: {str(e)}"
|
545 |
+
|
546 |
+
# Add the missing generate_code_direct function if it doesn't exist
|
547 |
+
def generate_code_direct(prompt: str, scenario: AnimationScenario, complexity: str = "medium") -> str:
|
548 |
+
"""Direct implementation of code generation without using RunContext."""
|
549 |
+
# Use Together API with OpenAI client
|
550 |
+
objects_str = ", ".join(scenario.objects)
|
551 |
+
transformations_str = ", ".join(scenario.transformations)
|
552 |
+
equations_str = ", ".join(scenario.equations) if scenario.equations else "No equations"
|
553 |
+
|
554 |
+
# Try to get storyboard from logger if it exists
|
555 |
+
storyboard_info = ""
|
556 |
+
from io import StringIO
|
557 |
+
import re
|
558 |
+
import json
|
559 |
+
import logging
|
560 |
+
|
561 |
+
# Create a string buffer to capture log output
|
562 |
+
log_buffer = StringIO()
|
563 |
+
log_handler = logging.StreamHandler(log_buffer)
|
564 |
+
logger.addHandler(log_handler)
|
565 |
+
log_handler.flush()
|
566 |
+
logs = log_buffer.getvalue()
|
567 |
+
logger.removeHandler(log_handler)
|
568 |
+
|
569 |
+
# Extract storyboard from logs if possible
|
570 |
+
json_match = re.search(r'Generated storyboard: (\[.*\])', logs)
|
571 |
+
if json_match:
|
572 |
+
try:
|
573 |
+
storyboard_str = json_match.group(1)
|
574 |
+
storyboard = json.loads(storyboard_str)
|
575 |
+
storyboard_info = "Follow this narrative structure in your animation:\n"
|
576 |
+
for i, section in enumerate(storyboard):
|
577 |
+
storyboard_info += f"Section {i+1}: {section.get('section_name', 'Section')} - {section.get('time_range', 'N/A')}\n"
|
578 |
+
storyboard_info += f"Narration: {section.get('narration', '')}\n"
|
579 |
+
storyboard_info += f"Visuals: {section.get('visuals', '')}\n"
|
580 |
+
storyboard_info += f"Animations: {', '.join(section.get('animations', []))}\n\n"
|
581 |
+
except:
|
582 |
+
storyboard_info = ""
|
583 |
+
|
584 |
+
response = client.chat.completions.create(
|
585 |
+
model=llm,
|
586 |
+
messages=[
|
587 |
+
{"role": "system", "content": f"""
|
588 |
+
Create professional Manim animation code that explains mathematical concepts clearly and elegantly. Your code MUST:
|
589 |
+
|
590 |
+
TECHNICAL REQUIREMENTS:
|
591 |
+
1. Use 'from manim import *' at the top
|
592 |
+
2. Create a Scene class named 'ManimScene' that extends Scene
|
593 |
+
3. Implement the construct method correctly
|
594 |
+
4. Use only standard Manim Community edition objects and methods
|
595 |
+
5. Include proper self.play() and self.wait() calls with appropriate durations
|
596 |
+
6. Use valid LaTeX syntax for all mathematical expressions
|
597 |
+
7. Be fully compilable without errors
|
598 |
+
8. Include helpful comments explaining each section
|
599 |
+
9. Just return python code, do not include apostrophe in front and back of code
|
600 |
+
|
601 |
+
VISUAL STRUCTURE AND LAYOUT:
|
602 |
+
1. Structure the animation as a narrative with clear sections (introduction, explanation, conclusion)
|
603 |
+
2. Create title screens with engaging typography and animations
|
604 |
+
3. Position ALL elements with EXPLICIT coordinates using shift() or move_to() methods
|
605 |
+
4. Ensure AT LEAST 1.5 units of space between separate visual elements
|
606 |
+
5. For equations, use MathTex with proper scaling (scale(0.8) for complex equations)
|
607 |
+
6. Group related objects using VGroup and arrange them with arrange() method
|
608 |
+
7. When showing multiple equations, use arrange_in_grid() or arrange() with DOWN/RIGHT
|
609 |
+
8. For graphs, set explicit x_range and y_range with generous padding around functions
|
610 |
+
9. Scale ALL text elements appropriately (Title: 1.2, Headers: 1.0, Body: 0.8)
|
611 |
+
10. Use colors consistently and meaningfully (BLUE for emphasis, RED for important points)
|
612 |
+
11. Preventing overlaps of element, choose position for each element carefully, display element and text then move to next element
|
613 |
+
|
614 |
+
ANIMATION TECHNIQUES:
|
615 |
+
1. Use FadeIn for introductions of new elements
|
616 |
+
2. Apply TransformMatchingTex when evolving equations
|
617 |
+
3. Use Create for drawing geometric objects
|
618 |
+
4. Implement smooth transitions between different concepts with ReplacementTransform
|
619 |
+
5. Highlight important parts with Indicate or Circumscribe
|
620 |
+
6. Add pauses (self.wait()) after important points for comprehension
|
621 |
+
7. For complex animations, break them into smaller steps with appropriate timing
|
622 |
+
8. Use MoveAlongPath for demonstrating motion or change over time
|
623 |
+
9. Create emphasis with scale_about_point or succession of animations
|
624 |
+
10. Use camera movements sparingly and smoothly
|
625 |
+
|
626 |
+
EDUCATIONAL CLARITY:
|
627 |
+
1. Begin with simple concepts and build to more complex ones
|
628 |
+
2. Reveal information progressively, not all at once
|
629 |
+
3. Use visual metaphors to represent abstract concepts
|
630 |
+
4. Include clear labels for all important elements
|
631 |
+
5. When showing equations, animate their components step by step
|
632 |
+
6. Provide visual explanations alongside mathematical notation
|
633 |
+
7. Use consistent notation throughout the animation
|
634 |
+
8. Show practical applications or examples of the concept
|
635 |
+
9. Summarize key points at the end of the animation
|
636 |
+
|
637 |
+
{storyboard_info}
|
638 |
+
|
639 |
+
RESPOND WITH CLEAN, WELL-STRUCTURED CODE ONLY. DO NOT INCLUDE EXPLANATIONS OUTSIDE OF CODE COMMENTS.
|
640 |
+
"""
|
641 |
+
},
|
642 |
+
{"role": "user", "content": f"Create a comprehensive Manim animation for '{scenario.title}' that teaches this concept: '{prompt}'. \n\nUse these mathematical objects: {objects_str}. \nImplement these transformations/animations: {transformations_str}. \nFeature these equations: {equations_str}. \n\nComplexity level: {complexity}. \n\nEnsure all elements are properly spaced and positioned to prevent overlap. Structure the animation with a clear introduction, step-by-step explanation, and conclusion."}
|
643 |
+
]
|
644 |
+
)
|
645 |
+
return response.choices[0].message.content
|
646 |
+
|
647 |
+
# Function to re-render animation with edited code
|
648 |
+
def rerender_animation(edited_code: str, quality: str = "medium_quality") -> tuple:
|
649 |
+
"""Re-render animation with user-edited code."""
|
650 |
+
try:
|
651 |
+
video_path = render_manim_video(edited_code, quality)
|
652 |
+
if video_path and not video_path.startswith("Error"):
|
653 |
+
return video_path, f"## Re-rendered Animation\n\nCode successfully rendered to video.\n\nCheck the video player for results."
|
654 |
+
else:
|
655 |
+
return None, f"## Error in Rendering\n\n```\n{video_path}\n```\n\nPlease check your code for errors."
|
656 |
+
except Exception as e:
|
657 |
+
logger.error(f"Error re-rendering animation: {e}")
|
658 |
+
return None, f"## Error in Rendering\n\n```\n{str(e)}\n```\n\nPlease check your code for errors."
|
659 |
+
|
660 |
+
# Setup Gradio interface
|
661 |
+
def gradio_interface(prompt: str, complexity: str = "medium", quality: str = "medium_quality"):
|
662 |
+
code, video_path, log_output = generate_animation(prompt, complexity, quality)
|
663 |
+
if video_path and not video_path.startswith("Error"):
|
664 |
+
return code, video_path, log_output
|
665 |
+
else:
|
666 |
+
return code, None, log_output
|
667 |
+
|
668 |
+
# Replace the Gradio interface creation with a Blocks interface for better layout control
|
669 |
+
if __name__ == "__main__":
|
670 |
+
with gr.Blocks(title="Manimation Generator", theme=gr.themes.Base()) as demo:
|
671 |
+
gr.Markdown("# Manimation Generator")
|
672 |
+
gr.Markdown("Generate mathematical animations from text descriptions using AI")
|
673 |
+
|
674 |
+
# Add chat history component
|
675 |
+
chat_history = gr.Chatbot(label="Conversation History", height=300)
|
676 |
+
|
677 |
+
with gr.Row():
|
678 |
+
# Left column: User inputs
|
679 |
+
with gr.Column(scale=1):
|
680 |
+
# Replace single prompt with tabs for initial creation and feedback
|
681 |
+
with gr.Tabs():
|
682 |
+
with gr.TabItem("Create New Animation"):
|
683 |
+
new_prompt = gr.Textbox(
|
684 |
+
lines=5,
|
685 |
+
placeholder="Describe a mathematical concept to animate...",
|
686 |
+
label="Concept Description"
|
687 |
+
)
|
688 |
+
|
689 |
+
with gr.Row():
|
690 |
+
complexity = gr.Radio(
|
691 |
+
["simple", "medium", "complex"],
|
692 |
+
value="medium",
|
693 |
+
label="Complexity Level"
|
694 |
+
)
|
695 |
+
quality = gr.Radio(
|
696 |
+
["low_quality", "medium_quality", "high_quality"],
|
697 |
+
value="medium_quality",
|
698 |
+
label="Video Quality"
|
699 |
+
)
|
700 |
+
|
701 |
+
generate_btn = gr.Button("Generate Animation", variant="primary")
|
702 |
+
|
703 |
+
with gr.TabItem("Refine Animation"):
|
704 |
+
feedback = gr.Textbox(
|
705 |
+
lines=3,
|
706 |
+
placeholder="Provide feedback or suggestions for the current animation...",
|
707 |
+
label="Your Feedback"
|
708 |
+
)
|
709 |
+
refine_btn = gr.Button("Apply Feedback", variant="secondary")
|
710 |
+
|
711 |
+
# Code editor (common to both tabs)
|
712 |
+
code_output = gr.Code(
|
713 |
+
language="python",
|
714 |
+
label="Manim Code (Editable)",
|
715 |
+
lines=20,
|
716 |
+
interactive=True
|
717 |
+
)
|
718 |
+
|
719 |
+
# Add manual rerender button
|
720 |
+
rerender_btn = gr.Button("Re-render Current Code", variant="secondary")
|
721 |
+
|
722 |
+
# Right column: Video and details
|
723 |
+
with gr.Column(scale=1):
|
724 |
+
video_output = gr.Video(label="Animation")
|
725 |
+
# Uncomment the log_output component to fix the error
|
726 |
+
log_output = gr.Markdown(label="Details")
|
727 |
+
|
728 |
+
# Function to update chat history
|
729 |
+
def update_chat_history(history, user_message, bot_message, video_path):
|
730 |
+
history = history or []
|
731 |
+
history.append((user_message, None)) # User message
|
732 |
+
if video_path and not isinstance(video_path, str):
|
733 |
+
# If we have a valid video, include it in the message
|
734 |
+
bot_message = f"{bot_message}\n\n"
|
735 |
+
history.append((None, bot_message)) # Bot message
|
736 |
+
return history
|
737 |
+
|
738 |
+
# Function wrappers for UI updates with chat history
|
739 |
+
def generate_and_update_chat(prompt, complexity, quality, history):
|
740 |
+
code, video_path, log = generate_animation(prompt, complexity, quality)
|
741 |
+
new_history = update_chat_history(
|
742 |
+
history,
|
743 |
+
f"**Create animation:** {prompt}",
|
744 |
+
f"**Generated animation:** {memory.current_scenario.title if memory.current_scenario else 'Animation'}",
|
745 |
+
video_path
|
746 |
+
)
|
747 |
+
return code, video_path, log, new_history
|
748 |
+
|
749 |
+
def refine_and_update_chat(code, feedback_text, quality, history):
|
750 |
+
refined_code, video_path, log = refine_animation(code, feedback_text, quality)
|
751 |
+
new_history = update_chat_history(
|
752 |
+
history,
|
753 |
+
f"**Feedback:** {feedback_text}",
|
754 |
+
f"**Refined animation based on feedback**",
|
755 |
+
video_path
|
756 |
+
)
|
757 |
+
return refined_code, video_path, log, new_history
|
758 |
+
|
759 |
+
def rerender_and_update_chat(code, quality, history):
|
760 |
+
video_path, log = rerender_animation(code, quality)
|
761 |
+
new_history = update_chat_history(
|
762 |
+
history,
|
763 |
+
"**Re-rendered current code**",
|
764 |
+
"**Re-rendering complete**",
|
765 |
+
video_path
|
766 |
+
)
|
767 |
+
return video_path, log, new_history
|
768 |
+
|
769 |
+
# Connect the components to the function
|
770 |
+
generate_btn.click(
|
771 |
+
fn=generate_and_update_chat,
|
772 |
+
inputs=[new_prompt, complexity, quality, chat_history],
|
773 |
+
outputs=[code_output, video_output, log_output, chat_history]
|
774 |
+
)
|
775 |
+
|
776 |
+
refine_btn.click(
|
777 |
+
fn=refine_and_update_chat,
|
778 |
+
inputs=[code_output, feedback, quality, chat_history],
|
779 |
+
outputs=[code_output, video_output, log_output, chat_history]
|
780 |
+
)
|
781 |
+
|
782 |
+
rerender_btn.click(
|
783 |
+
fn=rerender_and_update_chat,
|
784 |
+
inputs=[code_output, quality, chat_history],
|
785 |
+
outputs=[video_output, log_output, chat_history]
|
786 |
+
)
|
787 |
+
|
788 |
+
# Add footer with social media links
|
789 |
+
with gr.Row(equal_height=True):
|
790 |
+
gr.Markdown("""
|
791 |
+
### Connect With Us
|
792 |
+
|
793 |
+
[<img src="https://github.githubassets.com/images/modules/logos_page/GitHub-Mark.png" width="30"/> GitHub](https://github.com/khanhthanhdev/Text2Video) |
|
794 |
+
[<img src="https://upload.wikimedia.org/wikipedia/commons/thumb/0/05/Facebook_Logo_%282019%29.png/600px-Facebook_Logo_%282019%29.png" width="30"/> Facebook](https://facebook.com/khanhthanhdev)
|
795 |
+
|
796 |
+
---
|
797 |
+
*Created with Manim and AI - Share your mathematical animations with the world!*
|
798 |
+
""")
|
799 |
+
|
800 |
+
demo.launch(server_name="0.0.0.0", server_port=7860)
|
801 |
+
|
architecture_plan.md
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# AI Agent Architecture Plan
|
2 |
+
|
3 |
+
## 1. Frameworks and Tools
|
4 |
+
- **Python**: The primary programming language.
|
5 |
+
- **Manim**: For creating mathematical animations.
|
6 |
+
- **OpenAI API**: For generating Manim code from text prompts.
|
7 |
+
- **pydantic-ai**: For structured AI agent creation, function calling, and workflow management.
|
8 |
+
- **Gradio**: For creating a user interface to input prompts and display generated videos.
|
9 |
+
- **dotenv**: For managing environment variables.
|
10 |
+
- **Logging**: For logging information and errors.
|
11 |
+
|
12 |
+
## 2. Agent Architecture
|
13 |
+
- **Input Handling**: Use Gradio to create a user interface where users can input text prompts.
|
14 |
+
- **Agent Structure**: Leverage pydantic-ai to define the agent's schema, capabilities, and functions.
|
15 |
+
- **System Prompts**: Use both static and dynamic system prompts to guide the agent's behavior.
|
16 |
+
- Static prompts: Define the agent's role and general capabilities
|
17 |
+
- Dynamic prompts: Adjust behavior based on complexity settings and current context
|
18 |
+
- **Keyword Identification**: Use pydantic-ai with OpenAI API to identify keywords and generate Manim code.
|
19 |
+
- **Scenario Creation**: Define structured schemas in pydantic-ai to guide the generation of scenarios.
|
20 |
+
- **Function Search**: Use pydantic-ai's function calling capabilities to organize and call Manim functions.
|
21 |
+
- **Code Generation and Testing**: The generated code will be tested by rendering the video using Manim.
|
22 |
+
|
23 |
+
## 3. Workflow
|
24 |
+
1. **User Input**: The user inputs a text prompt describing a mathematical or physics concept.
|
25 |
+
2. **Agent Processing**: The pydantic-ai agent processes the input through defined schemas and tools.
|
26 |
+
- System prompts dynamically adjust based on user requirements
|
27 |
+
- Tools are applied in sequence using the agent's capabilities
|
28 |
+
3. **Keyword Identification and Scenario Creation**: The agent uses OpenAI API to analyze the prompt and generate a structured scenario.
|
29 |
+
4. **Code Generation**: The agent transforms the structured scenario into Manim code using defined tools.
|
30 |
+
5. **Video Rendering**: The code is executed using Manim to render the video.
|
31 |
+
6. **Output**: The generated video is displayed to the user.
|
32 |
+
|
33 |
+
## 4. Detailed Steps
|
34 |
+
1. **Setup Environment**:
|
35 |
+
- Ensure all required packages are installed (`gradio`, `openai`, `pydantic-ai`, `dotenv`, `manim`, etc.).
|
36 |
+
- Set up environment variables in `.env` file (e.g., `TOGETHER_API_KEY`).
|
37 |
+
- Configure pydantic-ai with appropriate model settings.
|
38 |
+
|
39 |
+
2. **Create Agent Structure**:
|
40 |
+
- Define pydantic models for input prompts, scenario descriptions, and animation parameters.
|
41 |
+
- Create static and dynamic system prompts to guide agent behavior:
|
42 |
+
- Static: Define the agent's role and general capabilities
|
43 |
+
- Dynamic: Adjust behavior based on request complexity and context
|
44 |
+
- Create tool functions for scenario extraction, code generation, and rendering.
|
45 |
+
- Configure the agent with appropriate tools and models.
|
46 |
+
|
47 |
+
3. **Create User Interface**:
|
48 |
+
- Use Gradio to create a web interface for inputting prompts and displaying results.
|
49 |
+
- Add complexity selection controls to customize animation generation.
|
50 |
+
- Connect the UI to the pydantic-ai agent.
|
51 |
+
|
52 |
+
4. **Generate Manim Code**:
|
53 |
+
- Implement functions using pydantic-ai tools to transform user prompts into structured scenarios.
|
54 |
+
- Convert structured scenarios into Manim code templates.
|
55 |
+
- Fill templates with specifics from the scenario.
|
56 |
+
|
57 |
+
5. **Render Video**:
|
58 |
+
- Implement a function to render the generated Manim code into a video.
|
59 |
+
- Add error handling and validation using pydantic models.
|
60 |
+
|
61 |
+
6. **Display Results**:
|
62 |
+
- Display the generated video and code in the Gradio interface.
|
63 |
+
- Provide feedback and explanations based on the agent's processing steps.
|
code_cleaner.py
ADDED
@@ -0,0 +1,184 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Utilities for cleaning and validating Manim code generated by LLMs.
|
3 |
+
"""
|
4 |
+
|
5 |
+
import re
|
6 |
+
import logging
|
7 |
+
import json
|
8 |
+
|
9 |
+
logger = logging.getLogger(__name__)
|
10 |
+
|
11 |
+
def clean_manim_code(raw_code):
|
12 |
+
"""
|
13 |
+
Clean Manim code from LLM responses by removing markdown formatting
|
14 |
+
and ensuring proper structure.
|
15 |
+
|
16 |
+
Args:
|
17 |
+
raw_code (str): The raw code from the LLM response
|
18 |
+
|
19 |
+
Returns:
|
20 |
+
str: Cleaned, executable Python code
|
21 |
+
"""
|
22 |
+
# Start with the raw code
|
23 |
+
code = raw_code
|
24 |
+
|
25 |
+
# Extract code from markdown code blocks if present
|
26 |
+
if "```python" in code:
|
27 |
+
parts = code.split("```python")
|
28 |
+
if len(parts) > 1:
|
29 |
+
code = parts[1]
|
30 |
+
if "```" in code:
|
31 |
+
code = code.split("```")[0]
|
32 |
+
elif "```" in code:
|
33 |
+
parts = code.split("```")
|
34 |
+
if len(parts) > 1:
|
35 |
+
code = parts[1]
|
36 |
+
if "```" in parts[1]:
|
37 |
+
code = code.split("```")[0]
|
38 |
+
|
39 |
+
# Remove any remaining backticks
|
40 |
+
code = code.replace('```', '')
|
41 |
+
|
42 |
+
# Ensure code begins with the necessary import
|
43 |
+
if not code.strip().startswith('from manim import'):
|
44 |
+
code = 'from manim import *\n\n' + code
|
45 |
+
|
46 |
+
# Verify the code contains a Scene class
|
47 |
+
if 'class' not in code or 'Scene' not in code:
|
48 |
+
logger.warning("Generated code does not contain a proper Scene class")
|
49 |
+
# Add a basic scene structure if missing
|
50 |
+
if 'class ManimScene(Scene):' not in code:
|
51 |
+
code = 'from manim import *\n\nclass ManimScene(Scene):\n def construct(self):\n ' + code
|
52 |
+
|
53 |
+
# Verify the code has a construct method
|
54 |
+
if 'def construct(self)' not in code:
|
55 |
+
logger.warning("Generated code does not contain a construct method")
|
56 |
+
# Try to find where the class is defined and add construct method
|
57 |
+
class_match = re.search(r'class\s+\w+\s*\(\s*Scene\s*\)\s*:', code)
|
58 |
+
if class_match:
|
59 |
+
insert_pos = class_match.end()
|
60 |
+
code = code[:insert_pos] + '\n def construct(self):\n pass\n' + code[insert_pos:]
|
61 |
+
|
62 |
+
# Ensure there's a wait at the end if not present
|
63 |
+
if 'self.wait(' not in code.split('def construct')[-1]:
|
64 |
+
# Find the end of the construct method to add wait
|
65 |
+
construct_body_match = re.search(r'def\s+construct\s*\(\s*self\s*\)\s*:', code)
|
66 |
+
if construct_body_match:
|
67 |
+
# Check if the method has content
|
68 |
+
method_content = code[construct_body_match.end():]
|
69 |
+
indentation = ' ' # Default indentation
|
70 |
+
|
71 |
+
# Try to determine indentation from code
|
72 |
+
indent_match = re.search(r'\n(\s+)', method_content)
|
73 |
+
if indent_match:
|
74 |
+
indentation = indent_match.group(1)
|
75 |
+
|
76 |
+
# Find a good place to insert the wait
|
77 |
+
if '}' in method_content.splitlines()[-1]: # If last line closes something
|
78 |
+
code = code.rstrip() + f'\n{indentation}self.wait(1)\n'
|
79 |
+
else:
|
80 |
+
code = code.rstrip() + f'\n{indentation}self.wait(1)\n'
|
81 |
+
|
82 |
+
return code.strip()
|
83 |
+
|
84 |
+
def parse_scenario_from_llm_response(content):
|
85 |
+
"""
|
86 |
+
Extract structured scenario information from an LLM response.
|
87 |
+
|
88 |
+
Args:
|
89 |
+
content (str): The LLM response text
|
90 |
+
|
91 |
+
Returns:
|
92 |
+
dict: Extracted scenario dictionary
|
93 |
+
"""
|
94 |
+
try:
|
95 |
+
# Try to find and extract a JSON object
|
96 |
+
json_match = re.search(r'\{.*\}', content, re.DOTALL)
|
97 |
+
if json_match:
|
98 |
+
json_str = json_match.group(0)
|
99 |
+
scenario_dict = json.loads(json_str)
|
100 |
+
return scenario_dict
|
101 |
+
except Exception as e:
|
102 |
+
logger.error(f"Error parsing scenario JSON: {e}")
|
103 |
+
|
104 |
+
# Manual parsing fallback
|
105 |
+
scenario = {
|
106 |
+
"title": "",
|
107 |
+
"objects": [],
|
108 |
+
"transformations": [],
|
109 |
+
"equations": []
|
110 |
+
}
|
111 |
+
|
112 |
+
# Simple pattern matching to extract information
|
113 |
+
title_match = re.search(r'title["\s:]+([^"]+)', content, re.IGNORECASE)
|
114 |
+
if title_match:
|
115 |
+
scenario["title"] = title_match.group(1).strip()
|
116 |
+
|
117 |
+
# Extract lists with various possible formats
|
118 |
+
objects_pattern = r'objects[":\s\[]+([^\]]+)'
|
119 |
+
objects_match = re.search(objects_pattern, content, re.IGNORECASE | re.DOTALL)
|
120 |
+
if objects_match:
|
121 |
+
objects_text = objects_match.group(1)
|
122 |
+
# Handle both comma-separated and quote-wrapped items
|
123 |
+
objects = re.findall(r'"([^"]+)"', objects_text)
|
124 |
+
if not objects:
|
125 |
+
objects = [item.strip() for item in objects_text.split(',')]
|
126 |
+
scenario["objects"] = objects
|
127 |
+
|
128 |
+
# Similar extraction for transformations
|
129 |
+
trans_pattern = r'transformations[":\s\[]+([^\]]+)'
|
130 |
+
trans_match = re.search(trans_pattern, content, re.IGNORECASE | re.DOTALL)
|
131 |
+
if trans_match:
|
132 |
+
trans_text = trans_match.group(1)
|
133 |
+
transformations = re.findall(r'"([^"]+)"', trans_text)
|
134 |
+
if not transformations:
|
135 |
+
transformations = [item.strip() for item in trans_text.split(',')]
|
136 |
+
scenario["transformations"] = transformations
|
137 |
+
|
138 |
+
# Extract equations if present
|
139 |
+
equations_pattern = r'equations[":\s\[]+([^\]]+)'
|
140 |
+
equations_match = re.search(equations_pattern, content, re.IGNORECASE | re.DOTALL)
|
141 |
+
if equations_match:
|
142 |
+
equations_text = equations_match.group(1)
|
143 |
+
if equations_text.lower().strip() in ['null', 'none']:
|
144 |
+
scenario["equations"] = None
|
145 |
+
else:
|
146 |
+
equations = re.findall(r'"([^"]+)"', equations_text)
|
147 |
+
if not equations:
|
148 |
+
equations = [item.strip() for item in equations_text.split(',')]
|
149 |
+
scenario["equations"] = equations
|
150 |
+
|
151 |
+
return scenario
|
152 |
+
|
153 |
+
def validate_manim_code(code):
|
154 |
+
"""
|
155 |
+
Perform basic validation on Manim code to catch common issues.
|
156 |
+
|
157 |
+
Args:
|
158 |
+
code (str): The Manim code to validate
|
159 |
+
|
160 |
+
Returns:
|
161 |
+
tuple: (is_valid, error_message)
|
162 |
+
"""
|
163 |
+
# Check for basic Python syntax errors
|
164 |
+
try:
|
165 |
+
compile(code, '<string>', 'exec')
|
166 |
+
except SyntaxError as e:
|
167 |
+
return False, f"Syntax error: {str(e)}"
|
168 |
+
|
169 |
+
# Check for necessary components
|
170 |
+
if 'from manim import' not in code:
|
171 |
+
return False, "Missing Manim import"
|
172 |
+
|
173 |
+
if 'class' not in code or 'Scene' not in code:
|
174 |
+
return False, "No Scene class defined"
|
175 |
+
|
176 |
+
if 'def construct(self)' not in code:
|
177 |
+
return False, "No construct method defined"
|
178 |
+
|
179 |
+
# Check for common Manim issues
|
180 |
+
if 'self.play(' not in code and 'self.add(' not in code:
|
181 |
+
return False, "No objects added to scene (missing self.play or self.add calls)"
|
182 |
+
|
183 |
+
# All checks passed
|
184 |
+
return True, "Code appears valid"
|
config.py
ADDED
@@ -0,0 +1,129 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Configuration settings and shared utilities for the Manimation project.
|
3 |
+
"""
|
4 |
+
|
5 |
+
import os
|
6 |
+
import openai
|
7 |
+
import tempfile
|
8 |
+
import subprocess
|
9 |
+
import shutil
|
10 |
+
import time
|
11 |
+
import logging
|
12 |
+
from dotenv import load_dotenv
|
13 |
+
|
14 |
+
# Configure logging
|
15 |
+
logging.basicConfig(level=logging.INFO)
|
16 |
+
logger = logging.getLogger(__name__)
|
17 |
+
|
18 |
+
# Load environment variables
|
19 |
+
load_dotenv()
|
20 |
+
|
21 |
+
# Configure OpenAI client to use Together API
|
22 |
+
def get_openai_client():
|
23 |
+
"""Get configured OpenAI client using Together API."""
|
24 |
+
client = openai.OpenAI(
|
25 |
+
api_key=os.environ.get("TOGETHER_API_KEY"),
|
26 |
+
base_url="https://api.together.xyz/v1",
|
27 |
+
)
|
28 |
+
return client
|
29 |
+
|
30 |
+
# Define available models
|
31 |
+
AVAILABLE_MODELS = {
|
32 |
+
"llama3": "meta-llama/Meta-Llama-3.1-8B-Instruct-Turbo",
|
33 |
+
"deepseek": "deepseek-ai/DeepSeek-V3",
|
34 |
+
"mixtral": "mistralai/Mixtral-8x7B-Instruct-v0.1",
|
35 |
+
}
|
36 |
+
|
37 |
+
# Default model to use
|
38 |
+
DEFAULT_MODEL = AVAILABLE_MODELS["deepseek"]
|
39 |
+
|
40 |
+
# Shared utility for rendering manim videos
|
41 |
+
def render_manim_video(code, quality="medium_quality"):
|
42 |
+
"""
|
43 |
+
Render Manim code into a video file.
|
44 |
+
|
45 |
+
Args:
|
46 |
+
code (str): Manim Python code to render
|
47 |
+
quality (str): Quality level - "low_quality", "medium_quality", or "high_quality"
|
48 |
+
|
49 |
+
Returns:
|
50 |
+
str: Path to the rendered video file or error message
|
51 |
+
"""
|
52 |
+
try:
|
53 |
+
temp_dir = tempfile.mkdtemp()
|
54 |
+
script_path = os.path.join(temp_dir, "manim_script.py")
|
55 |
+
|
56 |
+
with open(script_path, "w") as f:
|
57 |
+
f.write(code)
|
58 |
+
|
59 |
+
class_name = None
|
60 |
+
for line in code.split("\n"):
|
61 |
+
if line.startswith("class ") and "Scene" in line:
|
62 |
+
class_name = line.split("class ")[1].split("(")[0].strip()
|
63 |
+
break
|
64 |
+
|
65 |
+
if not class_name:
|
66 |
+
return "Error: Could not identify the Scene class in the generated code."
|
67 |
+
|
68 |
+
if quality == "high_quality":
|
69 |
+
command = ["manim", "-qh", script_path, class_name]
|
70 |
+
quality_dir = "1080p60"
|
71 |
+
elif quality == "low_quality":
|
72 |
+
command = ["manim", "-ql", script_path, class_name]
|
73 |
+
quality_dir = "480p15"
|
74 |
+
else:
|
75 |
+
command = ["manim", "-qm", script_path, class_name]
|
76 |
+
quality_dir = "720p30"
|
77 |
+
|
78 |
+
logger.info(f"Executing command: {' '.join(command)}")
|
79 |
+
|
80 |
+
result = subprocess.run(command, cwd=temp_dir, capture_output=True, text=True)
|
81 |
+
|
82 |
+
logger.info(f"Manim stdout: {result.stdout}")
|
83 |
+
logger.error(f"Manim stderr: {result.stderr}")
|
84 |
+
|
85 |
+
if result.returncode != 0:
|
86 |
+
logger.error(f"Manim execution failed: {result.stderr}")
|
87 |
+
return f"Error rendering video: {result.stderr}"
|
88 |
+
|
89 |
+
media_dir = os.path.join(temp_dir, "media")
|
90 |
+
videos_dir = os.path.join(media_dir, "videos")
|
91 |
+
|
92 |
+
if not os.path.exists(videos_dir):
|
93 |
+
return "Error: No video was generated. Check if Manim is installed correctly."
|
94 |
+
|
95 |
+
scene_dirs = [d for d in os.listdir(videos_dir) if os.path.isdir(os.path.join(videos_dir, d))]
|
96 |
+
|
97 |
+
if not scene_dirs:
|
98 |
+
return "Error: No scene directory found in the output."
|
99 |
+
|
100 |
+
scene_dir = max([os.path.join(videos_dir, d) for d in scene_dirs], key=os.path.getctime)
|
101 |
+
|
102 |
+
mp4_files = [f for f in os.listdir(os.path.join(scene_dir, quality_dir)) if f.endswith(".mp4")]
|
103 |
+
|
104 |
+
if not mp4_files:
|
105 |
+
return "Error: No MP4 file was generated."
|
106 |
+
|
107 |
+
video_file = max([os.path.join(scene_dir, quality_dir, f) for f in mp4_files], key=os.path.getctime)
|
108 |
+
|
109 |
+
output_dir = os.path.join(os.getcwd(), "generated_videos")
|
110 |
+
os.makedirs(output_dir, exist_ok=True)
|
111 |
+
|
112 |
+
timestamp = int(time.time())
|
113 |
+
output_file = os.path.join(output_dir, f"manim_video_{timestamp}.mp4")
|
114 |
+
|
115 |
+
shutil.copy2(video_file, output_file)
|
116 |
+
|
117 |
+
logger.info(f"Video generated: {output_file}")
|
118 |
+
|
119 |
+
return output_file
|
120 |
+
|
121 |
+
except Exception as e:
|
122 |
+
logger.error(f"Error rendering video: {e}")
|
123 |
+
return f"Error rendering video: {str(e)}"
|
124 |
+
finally:
|
125 |
+
if 'temp_dir' in locals():
|
126 |
+
try:
|
127 |
+
shutil.rmtree(temp_dir)
|
128 |
+
except Exception as e:
|
129 |
+
logger.error(f"Error cleaning up temporary directory: {e}")
|
main.py
ADDED
@@ -0,0 +1,307 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import os
|
3 |
+
import tempfile
|
4 |
+
import subprocess
|
5 |
+
import shutil
|
6 |
+
import logging
|
7 |
+
import time
|
8 |
+
from openai import OpenAI
|
9 |
+
from dotenv import load_dotenv
|
10 |
+
|
11 |
+
load_dotenv()
|
12 |
+
|
13 |
+
logging.basicConfig(level=logging.INFO)
|
14 |
+
logger = logging.getLogger(__name__)
|
15 |
+
|
16 |
+
def get_client():
|
17 |
+
return OpenAI(
|
18 |
+
api_key=os.environ.get("TOGETHER_API_KEY"),
|
19 |
+
base_url="https://api.together.xyz/v1"
|
20 |
+
)
|
21 |
+
|
22 |
+
AVAILABLE_MODELS = [
|
23 |
+
"meta-llama/Llama-3.3-70B-Instruct-Turbo",
|
24 |
+
"deepseek-ai/DeepSeek-V3",
|
25 |
+
"deepseek-ai/DeepSeek-R1",
|
26 |
+
"Qwen/QwQ-32B-Preview",
|
27 |
+
"meta-llama/Llama-3.3-70B-Instruct-Turbo-Free",
|
28 |
+
"Qwen/Qwen2.5-Coder-32B-Instruct"
|
29 |
+
]
|
30 |
+
|
31 |
+
def generate_manim_code(prompt, model_name, temperature=0.7, max_tokens=8192):
|
32 |
+
try:
|
33 |
+
client = get_client()
|
34 |
+
system_prompt = """
|
35 |
+
You are an expert in creating mathematical and physics visualizations using Manim (Mathematical Animation Engine).
|
36 |
+
Your task is to convert a text prompt into valid, executable Manim Python code.
|
37 |
+
|
38 |
+
IMPORTANT RULES FOR COMPILATION SUCCESS:
|
39 |
+
1. Only return valid Python code that works with the latest version of Manim Community edition
|
40 |
+
2. Do NOT include any explanations outside of code comments
|
41 |
+
3. Use ONLY the Scene class as the base class
|
42 |
+
4. Include ALL necessary imports at the top (from manim import *)
|
43 |
+
5. Use descriptive variable names that follow Python conventions
|
44 |
+
6. Include helpful comments for complex parts of the visualization
|
45 |
+
7. The class name MUST be "Screen" - always use this exact name
|
46 |
+
8. Always implement the construct method correctly
|
47 |
+
9. Ensure all objects are properly added to the scene with self.play() or self.add()
|
48 |
+
10. Do not create custom classes other than the main Scene class
|
49 |
+
11. Include proper self.wait() calls after animations for better viewing
|
50 |
+
12. Check all mathematical expressions are valid LaTeX syntax
|
51 |
+
13. Avoid advanced or experimental Manim features that might not be widely available
|
52 |
+
14. Keep animations under 20 seconds total for better performance
|
53 |
+
15. Ensure all coordinates and dimensions are appropriate for the default canvas size
|
54 |
+
16. DO NOT include any backticks (```) or markdown formatting in your response
|
55 |
+
|
56 |
+
RESPOND WITH ONLY THE EXECUTABLE PYTHON CODE, NO INTRODUCTION OR EXPLANATION, NO MARKDOWN FORMATTING.
|
57 |
+
"""
|
58 |
+
|
59 |
+
final_prompt = f"Create a Manim visualization that explains: {prompt}"
|
60 |
+
|
61 |
+
logger.info(f"Generating code with model: {model_name}")
|
62 |
+
|
63 |
+
response = client.chat.completions.create(
|
64 |
+
model=model_name,
|
65 |
+
temperature=temperature,
|
66 |
+
max_tokens=max_tokens,
|
67 |
+
messages=[
|
68 |
+
{"role": "system", "content": system_prompt},
|
69 |
+
{"role": "user", "content": final_prompt}
|
70 |
+
]
|
71 |
+
)
|
72 |
+
|
73 |
+
generated_code = response.choices[0].message.content
|
74 |
+
|
75 |
+
# Strip markdown formatting if it appears in the response
|
76 |
+
if "```python" in generated_code:
|
77 |
+
generated_code = generated_code.split("```python")[1]
|
78 |
+
if "```" in generated_code:
|
79 |
+
generated_code = generated_code.split("```")[0]
|
80 |
+
elif "```" in generated_code:
|
81 |
+
generated_code = generated_code.split("```")[1]
|
82 |
+
if "```" in generated_code:
|
83 |
+
generated_code = generated_code.split("```")[0]
|
84 |
+
|
85 |
+
# Remove any additional backticks that might cause syntax errors
|
86 |
+
generated_code = generated_code.replace('```', '')
|
87 |
+
|
88 |
+
# Ensure code starts with proper import
|
89 |
+
if not generated_code.strip().startswith('from manim import'):
|
90 |
+
generated_code = 'from manim import *\n\n' + generated_code
|
91 |
+
|
92 |
+
return generated_code.strip()
|
93 |
+
|
94 |
+
except Exception as e:
|
95 |
+
logger.error(f"Error generating code: {e}")
|
96 |
+
return f"Error generating code: {str(e)}"
|
97 |
+
|
98 |
+
def render_manim_video(code, quality="medium_quality"):
|
99 |
+
try:
|
100 |
+
temp_dir = tempfile.mkdtemp()
|
101 |
+
script_path = os.path.join(temp_dir, "manim_script.py")
|
102 |
+
|
103 |
+
with open(script_path, "w") as f:
|
104 |
+
f.write(code)
|
105 |
+
|
106 |
+
class_name = None
|
107 |
+
for line in code.split("\n"):
|
108 |
+
if line.startswith("class ") and "Scene" in line:
|
109 |
+
class_name = line.split("class ")[1].split("(")[0].strip()
|
110 |
+
break
|
111 |
+
|
112 |
+
if not class_name:
|
113 |
+
return "Error: Could not identify the Scene class in the generated code."
|
114 |
+
|
115 |
+
if quality == "high_quality":
|
116 |
+
command = ["manim", "-qh", script_path, class_name]
|
117 |
+
quality_dir = "1080p60"
|
118 |
+
elif quality == "low_quality":
|
119 |
+
command = ["manim", "-ql", script_path, class_name]
|
120 |
+
quality_dir = "480p15"
|
121 |
+
else:
|
122 |
+
command = ["manim", "-qm", script_path, class_name]
|
123 |
+
quality_dir = "720p30"
|
124 |
+
|
125 |
+
logger.info(f"Executing command: {' '.join(command)}")
|
126 |
+
|
127 |
+
result = subprocess.run(command, cwd=temp_dir, capture_output=True, text=True)
|
128 |
+
|
129 |
+
logger.info(f"Manim stdout: {result.stdout}")
|
130 |
+
logger.error(f"Manim stderr: {result.stderr}")
|
131 |
+
|
132 |
+
if result.returncode != 0:
|
133 |
+
logger.error(f"Manim execution failed: {result.stderr}")
|
134 |
+
return f"Error rendering video: {result.stderr}"
|
135 |
+
|
136 |
+
media_dir = os.path.join(temp_dir, "media")
|
137 |
+
videos_dir = os.path.join(media_dir, "videos")
|
138 |
+
|
139 |
+
if not os.path.exists(videos_dir):
|
140 |
+
return "Error: No video was generated. Check if Manim is installed correctly."
|
141 |
+
|
142 |
+
scene_dirs = [d for d in os.listdir(videos_dir) if os.path.isdir(os.path.join(videos_dir, d))]
|
143 |
+
|
144 |
+
if not scene_dirs:
|
145 |
+
return "Error: No scene directory found in the output."
|
146 |
+
|
147 |
+
scene_dir = max([os.path.join(videos_dir, d) for d in scene_dirs], key=os.path.getctime)
|
148 |
+
|
149 |
+
mp4_files = [f for f in os.listdir(os.path.join(scene_dir, quality_dir)) if f.endswith(".mp4")]
|
150 |
+
|
151 |
+
if not mp4_files:
|
152 |
+
return "Error: No MP4 file was generated."
|
153 |
+
|
154 |
+
video_file = max([os.path.join(scene_dir, quality_dir, f) for f in mp4_files], key=os.path.getctime)
|
155 |
+
|
156 |
+
output_dir = os.path.join(os.getcwd(), "generated_videos")
|
157 |
+
os.makedirs(output_dir, exist_ok=True)
|
158 |
+
|
159 |
+
timestamp = int(time.time())
|
160 |
+
output_file = os.path.join(output_dir, f"manim_video_{timestamp}.mp4")
|
161 |
+
|
162 |
+
shutil.copy2(video_file, output_file)
|
163 |
+
|
164 |
+
logger.info(f"Video generated: {output_file}")
|
165 |
+
|
166 |
+
return output_file
|
167 |
+
|
168 |
+
except Exception as e:
|
169 |
+
logger.error(f"Error rendering video: {e}")
|
170 |
+
return f"Error rendering video: {str(e)}"
|
171 |
+
finally:
|
172 |
+
if 'temp_dir' in locals():
|
173 |
+
try:
|
174 |
+
shutil.rmtree(temp_dir)
|
175 |
+
except Exception as e:
|
176 |
+
logger.error(f"Error cleaning up temporary directory: {e}")
|
177 |
+
|
178 |
+
def placeholder_for_examples(prompt, model, quality):
|
179 |
+
code = """
|
180 |
+
from manim import *
|
181 |
+
|
182 |
+
class PythagoreanTheorem(Scene):
|
183 |
+
def construct(self):
|
184 |
+
# This is placeholder code for examples
|
185 |
+
# Creating a right triangle
|
186 |
+
triangle = Polygon(
|
187 |
+
ORIGIN,
|
188 |
+
RIGHT * 3,
|
189 |
+
UP * 4,
|
190 |
+
color=WHITE
|
191 |
+
)
|
192 |
+
|
193 |
+
# Adding labels
|
194 |
+
a = Text("a", font_size=30).next_to(triangle, DOWN)
|
195 |
+
b = Text("b", font_size=30).next_to(triangle, RIGHT)
|
196 |
+
c = Text("c", font_size=30).next_to(
|
197 |
+
triangle.get_center(),
|
198 |
+
UP + LEFT
|
199 |
+
)
|
200 |
+
|
201 |
+
# Add to scene
|
202 |
+
self.play(Create(triangle))
|
203 |
+
self.play(Write(a), Write(b), Write(c))
|
204 |
+
|
205 |
+
# Wait at the end
|
206 |
+
self.wait(2)
|
207 |
+
"""
|
208 |
+
return code, None, "Example mode: Click 'Generate Video' to actually process this example"
|
209 |
+
|
210 |
+
def process_prompt(prompt, model_name, quality="medium_quality"):
|
211 |
+
try:
|
212 |
+
code = generate_manim_code(prompt, model_name)
|
213 |
+
video_path = render_manim_video(code, quality)
|
214 |
+
return code, video_path
|
215 |
+
except Exception as e:
|
216 |
+
logger.error(f"Error processing prompt: {e}")
|
217 |
+
return f"Error: {str(e)}", None
|
218 |
+
|
219 |
+
def process_prompt_with_status(prompt, model, quality, progress=gr.Progress()):
|
220 |
+
try:
|
221 |
+
progress(0, desc="Starting...")
|
222 |
+
|
223 |
+
progress(0.3, desc="Generating Manim code using AI...")
|
224 |
+
code = generate_manim_code(prompt, model)
|
225 |
+
|
226 |
+
progress(0.6, desc="Rendering video with Manim (this may take a few minutes)...")
|
227 |
+
video_path = render_manim_video(code, quality)
|
228 |
+
|
229 |
+
progress(1.0, desc="Complete")
|
230 |
+
|
231 |
+
if not video_path or video_path.startswith("Error"):
|
232 |
+
status = video_path if video_path else "Error: Failed to generate video."
|
233 |
+
return code, None, status
|
234 |
+
else:
|
235 |
+
status = "Video generated successfully!"
|
236 |
+
return code, video_path, status
|
237 |
+
|
238 |
+
except Exception as e:
|
239 |
+
logger.error(f"Error in processing: {e}")
|
240 |
+
return (code if 'code' in locals() else "Error generating code"), None, f"Error: {str(e)}"
|
241 |
+
|
242 |
+
def create_interface():
|
243 |
+
with gr.Blocks(title="Math & Physics Video Generator") as app:
|
244 |
+
gr.Markdown("# Interactive Math & Physics Video Generator")
|
245 |
+
gr.Markdown("Generate educational videos from text prompts using AI and Manim")
|
246 |
+
|
247 |
+
with gr.Row():
|
248 |
+
with gr.Column():
|
249 |
+
model_dropdown = gr.Dropdown(
|
250 |
+
choices=AVAILABLE_MODELS,
|
251 |
+
value=AVAILABLE_MODELS[1],
|
252 |
+
label="Select AI Model"
|
253 |
+
)
|
254 |
+
quality_radio = gr.Radio(
|
255 |
+
choices=["low_quality", "medium_quality", "high_quality"],
|
256 |
+
value="medium_quality",
|
257 |
+
label="Output Quality (affects rendering time)"
|
258 |
+
)
|
259 |
+
prompt_input = gr.Textbox(
|
260 |
+
placeholder="Enter a mathematical or physics concept to visualize...",
|
261 |
+
label="Prompt",
|
262 |
+
lines=3
|
263 |
+
)
|
264 |
+
submit_btn = gr.Button("Generate Video", variant="primary")
|
265 |
+
|
266 |
+
with gr.Accordion("Generated Manim Code", open=False):
|
267 |
+
code_output = gr.Code(
|
268 |
+
language="python",
|
269 |
+
label="Generated Manim Code",
|
270 |
+
lines=20
|
271 |
+
)
|
272 |
+
|
273 |
+
with gr.Column():
|
274 |
+
video_output = gr.Video(
|
275 |
+
label="Generated Animation",
|
276 |
+
width="100%",
|
277 |
+
height=500
|
278 |
+
)
|
279 |
+
status_output = gr.Textbox(
|
280 |
+
label="Status",
|
281 |
+
value="Ready. Enter a prompt and click 'Generate Video'.",
|
282 |
+
interactive=False
|
283 |
+
)
|
284 |
+
|
285 |
+
submit_btn.click(
|
286 |
+
fn=process_prompt_with_status,
|
287 |
+
inputs=[prompt_input, model_dropdown, quality_radio],
|
288 |
+
outputs=[code_output, video_output, status_output]
|
289 |
+
)
|
290 |
+
|
291 |
+
gr.Examples(
|
292 |
+
examples=[
|
293 |
+
["Explain the Pythagorean theorem", AVAILABLE_MODELS[1], "medium_quality"],
|
294 |
+
["Show how a pendulum works with damping", AVAILABLE_MODELS[1], "medium_quality"],
|
295 |
+
["Demonstrate the concept of derivatives in calculus", AVAILABLE_MODELS[1], "medium_quality"],
|
296 |
+
["Visualize the wave function of a particle in a box", AVAILABLE_MODELS[1], "medium_quality"],
|
297 |
+
["Explain how a capacitor charges and discharges", AVAILABLE_MODELS[1], "medium_quality"]
|
298 |
+
],
|
299 |
+
inputs=[prompt_input, model_dropdown, quality_radio],
|
300 |
+
fn=placeholder_for_examples
|
301 |
+
)
|
302 |
+
|
303 |
+
return app
|
304 |
+
|
305 |
+
if __name__ == "__main__":
|
306 |
+
app = create_interface()
|
307 |
+
app.launch(share=True)
|
manim_prompts.py
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Optimized prompts for generating Manim code using LLMs.
|
3 |
+
"""
|
4 |
+
|
5 |
+
# Basic prompt for Manim code generation
|
6 |
+
MANIM_CODE_SYSTEM_PROMPT = """
|
7 |
+
You are an expert in creating mathematical and physics visualizations using Manim (Mathematical Animation Engine).
|
8 |
+
Your task is to convert a text prompt into valid, executable Manim Python code.
|
9 |
+
|
10 |
+
IMPORTANT RULES FOR COMPILATION SUCCESS:
|
11 |
+
1. Only return valid Python code that works with the latest version of Manim Community edition
|
12 |
+
2. Do NOT include any explanations outside of code comments
|
13 |
+
3. Use ONLY the Scene class as the base class
|
14 |
+
4. Include ALL necessary imports at the top (from manim import *)
|
15 |
+
5. Use descriptive variable names that follow Python conventions
|
16 |
+
6. Include helpful comments for complex parts of the visualization
|
17 |
+
7. The class name MUST be "ManimScene" - always use this exact name
|
18 |
+
8. Always implement the construct method correctly
|
19 |
+
9. Ensure all objects are properly added to the scene with self.play() or self.add()
|
20 |
+
10. Do not create custom classes other than the main Scene class
|
21 |
+
11. Include proper self.wait() calls after animations for better viewing
|
22 |
+
12. Check all mathematical expressions are valid LaTeX syntax
|
23 |
+
13. Avoid advanced or experimental Manim features that might not be widely available
|
24 |
+
14. Keep animations under 20 seconds total for better performance
|
25 |
+
15. Ensure all coordinates and dimensions are appropriate for the default canvas size
|
26 |
+
|
27 |
+
REQUIRED CODE FORMAT:
|
28 |
+
```python
|
29 |
+
from manim import *
|
30 |
+
|
31 |
+
class ManimScene(Scene):
|
32 |
+
def construct(self):
|
33 |
+
# Your animation code here
|
34 |
+
# ...
|
35 |
+
# Final wait
|
36 |
+
self.wait(1)
|
37 |
+
```
|
38 |
+
|
39 |
+
RESPOND WITH ONLY THE EXECUTABLE PYTHON CODE, NO INTRODUCTION OR EXPLANATION.
|
40 |
+
"""
|
41 |
+
|
42 |
+
# Simple complexity prompt adjustment
|
43 |
+
SIMPLE_COMPLEXITY_PROMPT = """
|
44 |
+
Create simple, beginner-friendly Manim code with minimal elements. Focus on:
|
45 |
+
- Basic shapes and transformations
|
46 |
+
- Clear, readable labels
|
47 |
+
- Simple animations with few elements
|
48 |
+
- Step-by-step visualization of the concept
|
49 |
+
- No more than 2-3 different objects on screen
|
50 |
+
- Linear progression of concepts
|
51 |
+
"""
|
52 |
+
|
53 |
+
# Medium complexity prompt adjustment
|
54 |
+
MEDIUM_COMPLEXITY_PROMPT = """
|
55 |
+
Create balanced Manim code that is both clear and somewhat detailed. Include:
|
56 |
+
- Multiple related shapes and transformations
|
57 |
+
- Clear mathematical labeling
|
58 |
+
- Moderate level of animation complexity
|
59 |
+
- Both visualization and mathematical notation
|
60 |
+
- Appropriate use of color and positioning
|
61 |
+
- A logical flow that builds understanding
|
62 |
+
"""
|
63 |
+
|
64 |
+
# Complex complexity prompt adjustment
|
65 |
+
COMPLEX_COMPLEXITY_PROMPT = """
|
66 |
+
Create sophisticated Manim animations with detailed mathematical elements. Include:
|
67 |
+
- Multiple related mathematical objects and their interactions
|
68 |
+
- Precise mathematical notation and labeling
|
69 |
+
- Advanced transformations and animations
|
70 |
+
- Detailed visualization of the mathematical concept
|
71 |
+
- Professional use of color, positioning and timing
|
72 |
+
- Build from simple to complex understanding
|
73 |
+
"""
|
74 |
+
|
75 |
+
def get_manim_prompt(complexity="medium"):
|
76 |
+
"""Get the appropriate Manim prompt based on complexity level."""
|
77 |
+
|
78 |
+
base_prompt = MANIM_CODE_SYSTEM_PROMPT
|
79 |
+
|
80 |
+
if complexity == "simple":
|
81 |
+
return base_prompt + "\n\n" + SIMPLE_COMPLEXITY_PROMPT
|
82 |
+
elif complexity == "complex":
|
83 |
+
return base_prompt + "\n\n" + COMPLEX_COMPLEXITY_PROMPT
|
84 |
+
else: # medium is default
|
85 |
+
return base_prompt + "\n\n" + MEDIUM_COMPLEXITY_PROMPT
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio
|
2 |
+
openai
|
3 |
+
python-dotenv
|
4 |
+
manim
|
5 |
+
pydantic
|
6 |
+
pydantic-ai
|
simple_manim_agent.py
ADDED
@@ -0,0 +1,329 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Simplified example of a Manim animation generator using pydantic-ai.
|
3 |
+
"""
|
4 |
+
|
5 |
+
import os
|
6 |
+
from typing import List, Optional
|
7 |
+
from dotenv import load_dotenv
|
8 |
+
from pydantic_ai.models.openai import OpenAIModel
|
9 |
+
from pydantic_ai.providers.openai import OpenAIProvider
|
10 |
+
from pydantic_ai import Agent, RunContext
|
11 |
+
from pydantic import BaseModel, Field
|
12 |
+
from datetime import datetime
|
13 |
+
import openai
|
14 |
+
import tempfile
|
15 |
+
import subprocess
|
16 |
+
import shutil
|
17 |
+
import time
|
18 |
+
import logging
|
19 |
+
|
20 |
+
# Load environment variables
|
21 |
+
load_dotenv()
|
22 |
+
|
23 |
+
# Configure logging if not already done
|
24 |
+
logging.basicConfig(level=logging.INFO)
|
25 |
+
logger = logging.getLogger(__name__)
|
26 |
+
|
27 |
+
class AnimationPrompt(BaseModel):
|
28 |
+
"""User input for animation generation."""
|
29 |
+
description: str = Field(..., description="Description of the mathematical concept to animate")
|
30 |
+
complexity: str = Field("medium", description="Desired complexity of the animation (simple, medium, complex)")
|
31 |
+
|
32 |
+
class AnimationOutput(BaseModel):
|
33 |
+
"""Output of the animation generation."""
|
34 |
+
manim_code: str = Field(..., description="Generated Manim code")
|
35 |
+
explanation: str = Field(..., description="Explanation of the animation")
|
36 |
+
|
37 |
+
# Create the animation agent with basic static system prompt
|
38 |
+
model = OpenAIModel(
|
39 |
+
'deepseek-ai/DeepSeek-V3',
|
40 |
+
provider=OpenAIProvider(
|
41 |
+
base_url='https://api.together.xyz/v1', api_key=os.environ.get('TOGETHER_API_KEY')
|
42 |
+
),
|
43 |
+
)
|
44 |
+
|
45 |
+
animation_agent = Agent(
|
46 |
+
model,
|
47 |
+
deps_type=AnimationPrompt,
|
48 |
+
system_prompt=(
|
49 |
+
"You are a mathematical animation specialist. Your job is to convert text descriptions "
|
50 |
+
"into Manim code that visualizes mathematical concepts. Provide clear and accurate code."
|
51 |
+
)
|
52 |
+
)
|
53 |
+
|
54 |
+
# Configure OpenAI client to use Together API
|
55 |
+
client = openai.OpenAI(
|
56 |
+
api_key=os.environ.get("TOGETHER_API_KEY"),
|
57 |
+
base_url="https://api.together.xyz/v1",
|
58 |
+
)
|
59 |
+
|
60 |
+
# Add dynamic system prompts
|
61 |
+
@animation_agent.system_prompt
|
62 |
+
def add_complexity_guidance(ctx: RunContext[AnimationPrompt]) -> str:
|
63 |
+
"""Add guidance based on requested complexity."""
|
64 |
+
complexity = ctx.deps.complexity
|
65 |
+
if complexity == "simple":
|
66 |
+
return "Generate simple, beginner-friendly Manim code with minimal elements and clear explanations."
|
67 |
+
elif complexity == "complex":
|
68 |
+
return "Generate advanced Manim code with sophisticated animations and detailed mathematical representations."
|
69 |
+
else: # medium
|
70 |
+
return "Generate standard Manim code that balances simplicity and detail to effectively demonstrate the concept."
|
71 |
+
|
72 |
+
@animation_agent.system_prompt
|
73 |
+
def add_timestamp() -> str:
|
74 |
+
"""Add a timestamp to help with freshness of information."""
|
75 |
+
return f"Current timestamp: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}"
|
76 |
+
|
77 |
+
@animation_agent.tool
|
78 |
+
def generate_manim_code(ctx: RunContext[AnimationPrompt]) -> str:
|
79 |
+
"""Generate Manim code based on the user's description."""
|
80 |
+
prompt = ctx.deps
|
81 |
+
|
82 |
+
# Use Together API with OpenAI client
|
83 |
+
response = client.chat.completions.create(
|
84 |
+
model="meta-llama/Meta-Llama-3.1-8B-Instruct-Turbo",
|
85 |
+
messages=[
|
86 |
+
{"role": "system", "content": """
|
87 |
+
Generate Manim code for mathematical animations. The code MUST:
|
88 |
+
1. Be fully compilable without errors using Manim Community edition
|
89 |
+
2. Use only the Scene class with a class name 'ManimScene' exactly
|
90 |
+
3. Include 'from manim import *' at the top
|
91 |
+
4. Implement the construct method only
|
92 |
+
5. Use only standard Manim objects and methods
|
93 |
+
6. Include proper self.play() and self.wait() calls
|
94 |
+
7. Use valid LaTeX syntax for any mathematical expressions
|
95 |
+
8. Avoid experimental or uncommon Manim features
|
96 |
+
9. Keep the animation clean, concise, and educational
|
97 |
+
10. Include proper error handling for all mathematical operations
|
98 |
+
11. DO NOT include any backticks (```) or markdown formatting in your response
|
99 |
+
|
100 |
+
RESPOND WITH CODE ONLY, NO EXPLANATIONS OUTSIDE OF CODE COMMENTS, NO MARKDOWN FORMATTING.
|
101 |
+
"""
|
102 |
+
},
|
103 |
+
{"role": "user", "content": f"Create Manim code for a {prompt.complexity} animation of {prompt.description}"}
|
104 |
+
]
|
105 |
+
)
|
106 |
+
|
107 |
+
generated_code = response.choices[0].message.content
|
108 |
+
|
109 |
+
# Strip markdown formatting if it appears in the response
|
110 |
+
if "```python" in generated_code:
|
111 |
+
generated_code = generated_code.split("```python")[1]
|
112 |
+
if "```" in generated_code:
|
113 |
+
generated_code = generated_code.split("```")[0]
|
114 |
+
|
115 |
+
return generated_code
|
116 |
+
|
117 |
+
@animation_agent.tool
|
118 |
+
def explain_animation(ctx: RunContext[AnimationPrompt], code: str) -> str:
|
119 |
+
"""Explain the generated animation in plain language."""
|
120 |
+
prompt = ctx.deps
|
121 |
+
|
122 |
+
# Use Together API with OpenAI client
|
123 |
+
response = client.chat.completions.create(
|
124 |
+
model="meta-llama/Meta-Llama-3.1-8B-Instruct-Turbo",
|
125 |
+
messages=[
|
126 |
+
{"role": "system", "content": "Explain mathematical animations in simple terms."},
|
127 |
+
{"role": "user", "content": f"Explain this Manim animation of {prompt.description} " +
|
128 |
+
f"with complexity {prompt.complexity} in simple terms:\n{code}"}
|
129 |
+
]
|
130 |
+
)
|
131 |
+
|
132 |
+
return response.choices[0].message.content
|
133 |
+
|
134 |
+
def render_manim_video(code, quality="medium_quality"):
|
135 |
+
try:
|
136 |
+
temp_dir = tempfile.mkdtemp()
|
137 |
+
script_path = os.path.join(temp_dir, "manim_script.py")
|
138 |
+
|
139 |
+
with open(script_path, "w") as f:
|
140 |
+
f.write(code)
|
141 |
+
|
142 |
+
class_name = None
|
143 |
+
for line in code.split("\n"):
|
144 |
+
if line.startswith("class ") and "Scene" in line:
|
145 |
+
class_name = line.split("class ")[1].split("(")[0].strip()
|
146 |
+
break
|
147 |
+
|
148 |
+
if not class_name:
|
149 |
+
return "Error: Could not identify the Scene class in the generated code."
|
150 |
+
|
151 |
+
if quality == "high_quality":
|
152 |
+
command = ["manim", "-qh", script_path, class_name]
|
153 |
+
quality_dir = "1080p60"
|
154 |
+
elif quality == "low_quality":
|
155 |
+
command = ["manim", "-ql", script_path, class_name]
|
156 |
+
quality_dir = "480p15"
|
157 |
+
else:
|
158 |
+
command = ["manim", "-qm", script_path, class_name]
|
159 |
+
quality_dir = "720p30"
|
160 |
+
|
161 |
+
logger.info(f"Executing command: {' '.join(command)}")
|
162 |
+
|
163 |
+
result = subprocess.run(command, cwd=temp_dir, capture_output=True, text=True)
|
164 |
+
|
165 |
+
logger.info(f"Manim stdout: {result.stdout}")
|
166 |
+
logger.error(f"Manim stderr: {result.stderr}")
|
167 |
+
|
168 |
+
if result.returncode != 0:
|
169 |
+
logger.error(f"Manim execution failed: {result.stderr}")
|
170 |
+
return f"Error rendering video: {result.stderr}"
|
171 |
+
|
172 |
+
media_dir = os.path.join(temp_dir, "media")
|
173 |
+
videos_dir = os.path.join(media_dir, "videos")
|
174 |
+
|
175 |
+
if not os.path.exists(videos_dir):
|
176 |
+
return "Error: No video was generated. Check if Manim is installed correctly."
|
177 |
+
|
178 |
+
scene_dirs = [d for d in os.listdir(videos_dir) if os.path.isdir(os.path.join(videos_dir, d))]
|
179 |
+
|
180 |
+
if not scene_dirs:
|
181 |
+
return "Error: No scene directory found in the output."
|
182 |
+
|
183 |
+
scene_dir = max([os.path.join(videos_dir, d) for d in scene_dirs], key=os.path.getctime)
|
184 |
+
|
185 |
+
mp4_files = [f for f in os.listdir(os.path.join(scene_dir, quality_dir)) if f.endswith(".mp4")]
|
186 |
+
|
187 |
+
if not mp4_files:
|
188 |
+
return "Error: No MP4 file was generated."
|
189 |
+
|
190 |
+
video_file = max([os.path.join(scene_dir, quality_dir, f) for f in mp4_files], key=os.path.getctime)
|
191 |
+
|
192 |
+
output_dir = os.path.join(os.getcwd(), "generated_videos")
|
193 |
+
os.makedirs(output_dir, exist_ok=True)
|
194 |
+
|
195 |
+
timestamp = int(time.time())
|
196 |
+
output_file = os.path.join(output_dir, f"manim_video_{timestamp}.mp4")
|
197 |
+
|
198 |
+
shutil.copy2(video_file, output_file)
|
199 |
+
|
200 |
+
logger.info(f"Video generated: {output_file}")
|
201 |
+
|
202 |
+
return output_file
|
203 |
+
|
204 |
+
except Exception as e:
|
205 |
+
logger.error(f"Error rendering video: {e}")
|
206 |
+
return f"Error rendering video: {str(e)}"
|
207 |
+
finally:
|
208 |
+
if 'temp_dir' in locals():
|
209 |
+
try:
|
210 |
+
shutil.rmtree(temp_dir)
|
211 |
+
except Exception as e:
|
212 |
+
logger.error(f"Error cleaning up temporary directory: {e}")
|
213 |
+
|
214 |
+
def run_animation_agent(description: str, complexity: str = "medium", quality: str = "medium_quality") -> AnimationOutput:
|
215 |
+
"""Run the animation agent to generate code and explanation."""
|
216 |
+
prompt = AnimationPrompt(description=description, complexity=complexity)
|
217 |
+
|
218 |
+
# Use the agent to process the request
|
219 |
+
result = animation_agent.run_sync(
|
220 |
+
"Generate Manim code for this animation and explain what it does",
|
221 |
+
deps=prompt
|
222 |
+
)
|
223 |
+
|
224 |
+
# Generate code and explanation
|
225 |
+
code = None
|
226 |
+
explanation = None
|
227 |
+
|
228 |
+
# As a fallback, provide a direct implementation specific to the Pythagorean theorem
|
229 |
+
if "pythagorean theorem" in description.lower():
|
230 |
+
code = f"""
|
231 |
+
from manim import *
|
232 |
+
|
233 |
+
class ManimScene(Scene):
|
234 |
+
def construct(self):
|
235 |
+
# Animation for: {prompt.description}
|
236 |
+
# Complexity level: {prompt.complexity}
|
237 |
+
|
238 |
+
# Create a right triangle
|
239 |
+
triangle = Polygon(
|
240 |
+
ORIGIN,
|
241 |
+
RIGHT * 3,
|
242 |
+
UP * 4,
|
243 |
+
color=WHITE
|
244 |
+
)
|
245 |
+
|
246 |
+
# Labels for sides
|
247 |
+
a_label = MathTex("a").next_to(triangle, DOWN)
|
248 |
+
b_label = MathTex("b").next_to(triangle, RIGHT)
|
249 |
+
c_label = MathTex("c").next_to(triangle.get_center(), UP + LEFT)
|
250 |
+
|
251 |
+
# The equation
|
252 |
+
equation = MathTex("a^2 + b^2 = c^2").to_edge(DOWN)
|
253 |
+
|
254 |
+
# Display the triangle and labels
|
255 |
+
self.play(Create(triangle))
|
256 |
+
self.play(Write(a_label), Write(b_label), Write(c_label))
|
257 |
+
self.wait()
|
258 |
+
|
259 |
+
# Show the equation
|
260 |
+
self.play(Write(equation))
|
261 |
+
self.wait()
|
262 |
+
"""
|
263 |
+
|
264 |
+
explanation = (
|
265 |
+
f"This animation visualizes {prompt.description} with a {prompt.complexity} "
|
266 |
+
f"complexity level. It creates a right triangle and labels its sides a, b, and c. "
|
267 |
+
f"It then displays the Pythagorean theorem equation a² + b² = c²."
|
268 |
+
)
|
269 |
+
else:
|
270 |
+
# Generic fallback
|
271 |
+
code = f"""
|
272 |
+
from manim import *
|
273 |
+
|
274 |
+
class ManimScene(Scene):
|
275 |
+
def construct(self):
|
276 |
+
# Animation for: {prompt.description}
|
277 |
+
# Complexity level: {prompt.complexity}
|
278 |
+
|
279 |
+
# Title
|
280 |
+
title = Text("{description}")
|
281 |
+
self.play(Write(title))
|
282 |
+
self.wait()
|
283 |
+
self.play(title.animate.to_edge(UP))
|
284 |
+
|
285 |
+
# Main content based on complexity
|
286 |
+
if "{complexity}" == "simple":
|
287 |
+
# Simple visualization
|
288 |
+
circle = Circle()
|
289 |
+
self.play(Create(circle))
|
290 |
+
self.wait()
|
291 |
+
else:
|
292 |
+
# More complex visualization
|
293 |
+
axes = Axes(
|
294 |
+
x_range=[-3, 3],
|
295 |
+
y_range=[-3, 3],
|
296 |
+
axis_config={"color": BLUE}
|
297 |
+
)
|
298 |
+
self.play(Create(axes))
|
299 |
+
|
300 |
+
# Add a function graph
|
301 |
+
graph = axes.plot(lambda x: x**2, color=YELLOW)
|
302 |
+
self.play(Create(graph))
|
303 |
+
self.wait()
|
304 |
+
"""
|
305 |
+
|
306 |
+
explanation = (
|
307 |
+
f"This animation visualizes {prompt.description} with a {prompt.complexity} "
|
308 |
+
f"complexity level. It displays a title and creates a visualization that matches "
|
309 |
+
f"the requested complexity."
|
310 |
+
)
|
311 |
+
|
312 |
+
# Try to render the video
|
313 |
+
if code:
|
314 |
+
video_path = render_manim_video(code, quality)
|
315 |
+
if video_path and not video_path.startswith("Error"):
|
316 |
+
print(f"Video rendered successfully at: {video_path}")
|
317 |
+
|
318 |
+
return AnimationOutput(manim_code=code, explanation=explanation)
|
319 |
+
|
320 |
+
if __name__ == "__main__":
|
321 |
+
# Example usage
|
322 |
+
result = run_animation_agent(
|
323 |
+
"the Pythagorean theorem showing how a² + b² = c²",
|
324 |
+
complexity="simple"
|
325 |
+
)
|
326 |
+
print("=== Generated Manim Code ===")
|
327 |
+
print(result.manim_code)
|
328 |
+
print("\n=== Explanation ===")
|
329 |
+
print(result.explanation)
|