File size: 8,859 Bytes
e9812a3
a0dfd75
 
 
 
 
e9812a3
 
 
a0dfd75
 
 
 
 
 
 
 
 
e9812a3
a0dfd75
 
4ac7ffc
a0dfd75
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e9812a3
 
 
 
 
 
 
 
 
 
 
 
 
4ac7ffc
e9812a3
 
 
 
 
 
 
 
 
 
 
a0dfd75
 
 
 
 
 
 
 
 
e9812a3
 
 
4ac7ffc
a0dfd75
e9812a3
a0dfd75
 
 
e9812a3
 
 
 
 
 
a0dfd75
 
 
 
 
 
 
 
 
e9812a3
 
 
4ac7ffc
a0dfd75
e9812a3
a0dfd75
 
 
e9812a3
 
 
 
 
 
a0dfd75
 
 
 
 
 
 
 
 
 
 
 
e9812a3
 
 
4ac7ffc
a0dfd75
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4ac7ffc
a0dfd75
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e9812a3
 
4ac7ffc
e9812a3
 
 
 
4ac7ffc
 
 
 
 
 
 
 
e9812a3
4ac7ffc
 
 
e9812a3
4ac7ffc
e9812a3
4ac7ffc
 
 
e9812a3
 
 
 
4ac7ffc
e9812a3
 
 
 
 
 
a0dfd75
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ea4793c
 
 
 
 
 
 
 
 
 
 
e9812a3
a0dfd75
 
e9812a3
 
 
4ac7ffc
e9812a3
 
a0dfd75
 
 
 
 
e9812a3
 
 
4ac7ffc
e9812a3
 
a0dfd75
 
e9812a3
ea4793c
 
 
 
 
 
 
 
 
 
a0dfd75
 
 
 
 
 
 
 
5e958ff
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
import base64
import gradio as gr
import librosa
import logging
import os
import soundfile as sf
import subprocess
import tempfile
import urllib.request

from datetime import datetime
from time import time

from examples import examples
from model import UETASRModel


def get_duration(filename: str) -> float:
    return librosa.get_duration(path=filename)


def convert_to_wav(in_filename: str) -> str:
    out_filename = os.path.splitext(in_filename)[0] + ".wav"
    logging.info(f"Converting {in_filename} to {out_filename}")
    y, sr = librosa.load(in_filename, sr=16000)
    sf.write(out_filename, y, sr)
    return out_filename


def build_html_output(s: str, style: str = "result_item_success"):
    return f"""
    <div class='result'>
        <div class='result_item {style}'>
          {s}
        </div>
    </div>
    """


def process_url(
    url: str,
    decoding_method: str,
    beam_size: int,
    max_symbols_per_step: int,
):
    logging.info(f"Processing URL: {url}")
    with tempfile.NamedTemporaryFile() as f:
        try:
            urllib.request.urlretrieve(url, f.name)
            return process(in_filename=f.name,
                           decoding_method=decoding_method,
                           beam_size=beam_size,
                           max_symbols_per_step=max_symbols_per_step)
        except Exception as e:
            logging.info(str(e))
            return "", build_html_output(str(e), "result_item_error")


def process_uploaded_file(
    in_filename: str,
    decoding_method: str,
    beam_size: int,
    max_symbols_per_step: int,
):
    if in_filename is None or in_filename == "":
        return "", build_html_output(
            "Please first upload a file and then click "
            'the button "submit for recognition"',
            "result_item_error",
        )

    logging.info(f"Processing uploaded file: {in_filename}")
    try:
        return process(in_filename=in_filename,
                       decoding_method=decoding_method,
                       beam_size=beam_size,
                       max_symbols_per_step=max_symbols_per_step)
    except Exception as e:
        logging.info(str(e))
        return "", build_html_output(str(e), "result_item_error")


def process_microphone(
    in_filename: str,
    decoding_method: str,
    beam_size: int,
    max_symbols_per_step: int,
):
    if in_filename is None or in_filename == "":
        return "", build_html_output(
            "Please first upload a file and then click "
            'the button "submit for recognition"',
            "result_item_error",
        )

    logging.info(f"Processing microphone: {in_filename}")
    try:
        return process(in_filename=in_filename,
                       decoding_method=decoding_method,
                       beam_size=beam_size,
                       max_symbols_per_step=max_symbols_per_step)
    except Exception as e:
        logging.info(str(e))
        return "", build_html_output(str(e), "result_item_error")


def process(
    in_filename: str,
    decoding_method: str,
    beam_size: int,
    max_symbols_per_step: int,
):
    logging.info(f"in_filename: {in_filename}")

    filename = convert_to_wav(in_filename)

    now = datetime.now()
    date_time = now.strftime("%d/%m/%Y, %H:%M:%S.%f")
    logging.info(f"Started at {date_time}")

    repo_id = "thanhtvt/uetasr-conformer_30.3m"

    start = time()

    recognizer = UETASRModel(repo_id,
                             decoding_method,
                             beam_size,
                             max_symbols_per_step)
    text = recognizer.predict(filename)

    date_time = now.strftime("%d/%m/%Y, %H:%M:%S.%f")
    end = time()

    duration = get_duration(filename)
    rtf = (end - start) / duration

    logging.info(f"Finished at {date_time} s. Elapsed: {end - start: .3f} s")

    info = f"""
    Wave duration  : {duration: .3f} s <br/>
    Processing time: {end - start: .3f} s <br/>
    RTF: {end - start: .3f}/{duration: .3f} = {rtf:.3f} <br/>
    """
    if rtf > 1:
        info += (
            "<br/>We are loading required resources for the first run. "
            "Please run again to measure the real RTF.<br/>"
        )

    logging.info(info)

    return text, build_html_output(info)


title = "Vietnamese Automatic Speech Recognition with UETASR"
description = """
This space shows how to use UETASR for Vietnamese Automatic Speech Recognition.

It is running on CPU provided by Hugging Face 🤗

See more information by visiting the [Github repository](https://github.com/thanhtvt/uetasr/)
"""

# css style is copied from
# https://huggingface.co/spaces/alphacep/asr/blob/main/app.py#L113
css = """
.result {display:flex;flex-direction:column}
.result_item {padding:15px;margin-bottom:8px;border-radius:15px;width:100%}
.result_item_success {background-color:mediumaquamarine;color:white;align-self:start}
.result_item_error {background-color:#ff7070;color:white;align-self:start}
"""

demo = gr.Blocks(css=css)


with demo:
    gr.Markdown(title)

    decode_method_radio = gr.Radio(
        label="Decoding method",
        choices=["greedy_search", "beam_search"],
        value="greedy_search",
        interactive=True,
    )

    beam_size_slider = gr.Slider(
        label="Beam size",
        minimum=1,
        maximum=20,
        step=1,
        value=1,
        interactive=False,
    )

    def interact_beam_slider(decoding_method):
        if decoding_method == "greedy_search":
            return gr.update(value=1, interactive=False)
        else:
            return gr.update(interactive=True)

    decode_method_radio.change(interact_beam_slider,
                               decode_method_radio,
                               beam_size_slider)

    max_symbols_per_step_slider = gr.Slider(
        label="Maximum symbols per step",
        minimum=1,
        maximum=20,
        step=1,
        value=5,
        interactive=True,
        visible=True,
    )

    with gr.Tabs():
        with gr.TabItem("Upload from disk"):
            uploaded_file = gr.Audio(
                source="upload",  # Choose between "microphone", "upload"
                type="filepath",
                label="Upload from disk",
            )
            upload_button = gr.Button("Submit for recognition")
            uploaded_output = gr.Textbox(label="Recognized speech from uploaded file")
            uploaded_html_info = gr.HTML(label="Info")

            gr.Examples(
                examples=examples,
                inputs=uploaded_file,
                outputs=[uploaded_output, uploaded_html_info],
                fn=process_uploaded_file,
            )

        with gr.TabItem("Record from microphone"):
            microphone = gr.Audio(
                source="microphone",
                type="filepath",
                label="Record from microphone",
            )

            record_button = gr.Button("Submit for recognition")
            recorded_output = gr.Textbox(label="Recognized speech from recordings")
            recorded_html_info = gr.HTML(label="Info")

            gr.Examples(
                examples=examples,
                inputs=microphone,
                outputs=[uploaded_output, uploaded_html_info],
                fn=process_microphone,
            )

        with gr.TabItem("From URL"):
            url_textbox = gr.Textbox(
                max_lines=1,
                placeholder="URL to an audio file",
                label="URL",
                interactive=True,
            )

            url_button = gr.Button("Submit for recognition")
            url_output = gr.Textbox(label="Recognized speech from URL")
            url_html_info = gr.HTML(label="Info")

        upload_button.click(
            process_uploaded_file,
            inputs=[
                uploaded_file,
                decode_method_radio,
                beam_size_slider,
                max_symbols_per_step_slider,
            ],
            outputs=[uploaded_output, uploaded_html_info],
        )

        record_button.click(
            process_microphone,
            inputs=[
                microphone,
                decode_method_radio,
                beam_size_slider,
                max_symbols_per_step_slider,
            ],
            outputs=[recorded_output, recorded_html_info],
        )

        url_button.click(
            process_url,
            inputs=[
                url_textbox,
                decode_method_radio,
                beam_size_slider,
                max_symbols_per_step_slider,
            ],
            outputs=[url_output, url_html_info],
        )
    gr.Markdown(description)


if __name__ == "__main__":
    formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"

    logging.basicConfig(format=formatter, level=logging.INFO)

    demo.launch()