bert1
Browse files- Dockerfile +16 -0
- main.py +26 -0
- requirements.txt +4 -0
Dockerfile
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Read the doc: https://huggingface.co/docs/hub/spaces-sdks-docker
|
2 |
+
# you will also find guides on how best to write your Dockerfile
|
3 |
+
|
4 |
+
FROM python:3.9
|
5 |
+
|
6 |
+
RUN useradd -m -u 1000 user
|
7 |
+
USER user
|
8 |
+
ENV PATH="/home/user/.local/bin:$PATH"
|
9 |
+
|
10 |
+
WORKDIR /app
|
11 |
+
|
12 |
+
COPY --chown=user ./requirements.txt requirements.txt
|
13 |
+
RUN pip install --no-cache-dir --upgrade -r requirements.txt
|
14 |
+
|
15 |
+
COPY --chown=user . /main
|
16 |
+
CMD ["uvicorn", "main:app", "--host", "0.0.0.0", "--port", "7860"]
|
main.py
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
2 |
+
import torch
|
3 |
+
|
4 |
+
import pandas as pd
|
5 |
+
|
6 |
+
splits = {'train': 'train_df.csv', 'validation': 'val_df.csv', 'test': 'test_df.csv'}
|
7 |
+
df = pd.read_csv("hf://datasets/Sp1786/multiclass-sentiment-analysis-dataset/" + splits["train"])
|
8 |
+
|
9 |
+
model_name = "tabularisai/multilingual-sentiment-analysis"
|
10 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
11 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
12 |
+
|
13 |
+
def predict_sentiment(texts):
|
14 |
+
inputs = tokenizer(texts, return_tensors="pt", truncation=True, padding=True, max_length=512)
|
15 |
+
with torch.no_grad():
|
16 |
+
outputs = model(**inputs)
|
17 |
+
probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1)
|
18 |
+
sentiment_map = {0: "Very Negative", 1: "Negative", 2: "Neutral", 3: "Positive", 4: "Very Positive"}
|
19 |
+
return [sentiment_map[p] for p in torch.argmax(probabilities, dim=-1).tolist()]
|
20 |
+
|
21 |
+
texts = [
|
22 |
+
# English
|
23 |
+
"I absolutely love the new design of this app!", "Cooking microwave pizzas, yummy.", "The weather is fine, nothing special.",
|
24 |
+
]
|
25 |
+
|
26 |
+
print(predict_sentiment(texts))
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
transformers
|
3 |
+
pandas
|
4 |
+
datasets
|