message
Browse files- sms_process_data_main.xlsx β data/sms_process_data_main.xlsx +0 -0
- main.py +41 -68
- models/sms_classifier_model.pkl +3 -0
- models/tfidf_vectorizer.pkl +3 -0
- schemas/input_schemas.py +19 -0
- services/sms_service.py +59 -0
- services/train_model.py +43 -0
sms_process_data_main.xlsx β data/sms_process_data_main.xlsx
RENAMED
File without changes
|
main.py
CHANGED
@@ -1,40 +1,22 @@
|
|
|
|
1 |
from fastapi import FastAPI, HTTPException
|
2 |
from pydantic import BaseModel
|
3 |
-
from sentence_transformers import SentenceTransformer
|
4 |
import numpy as np
|
5 |
-
import
|
|
|
|
|
6 |
|
7 |
# Initialize FastAPI
|
8 |
app = FastAPI()
|
9 |
|
10 |
-
# Load the
|
11 |
-
|
12 |
-
model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2", trust_remote_code=True)
|
13 |
-
print("β
Model loaded successfully")
|
14 |
-
except Exception as e:
|
15 |
-
raise RuntimeError(f"β Failed to load model: {str(e)}")
|
16 |
-
|
17 |
-
# Define request schemas
|
18 |
-
class CosineSimilarityInput(BaseModel):
|
19 |
-
text1: str
|
20 |
-
text2: str
|
21 |
-
|
22 |
-
class MessageInput(BaseModel):
|
23 |
-
message: str
|
24 |
-
|
25 |
-
# Load SMS dataset from Excel
|
26 |
-
file_path = "sms_process_data_main.xlsx"
|
27 |
-
df = pd.read_excel(file_path)
|
28 |
-
|
29 |
-
# Precompute embeddings
|
30 |
-
transactional_examples = df[df['label'] == 'Transaction']['MessageText'].tolist()
|
31 |
-
offer_examples = df[df['label'] == 'Offer']['MessageText'].tolist()
|
32 |
-
|
33 |
-
transactional_embeddings = [model.encode(msg, convert_to_tensor=True).cpu().numpy() for msg in transactional_examples]
|
34 |
-
offer_embeddings = [model.encode(msg, convert_to_tensor=True).cpu().numpy() for msg in offer_examples]
|
35 |
|
36 |
# Function to compute cosine similarity
|
37 |
def cosine_similarity(vec1, vec2):
|
|
|
|
|
|
|
38 |
norm1 = np.linalg.norm(vec1)
|
39 |
norm2 = np.linalg.norm(vec2)
|
40 |
if norm1 == 0 or norm2 == 0:
|
@@ -44,57 +26,48 @@ def cosine_similarity(vec1, vec2):
|
|
44 |
# π 1οΈβ£ Homepage Endpoint
|
45 |
@app.get("/")
|
46 |
async def home():
|
47 |
-
return {"message": "Welcome to Classification
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
|
49 |
-
# π’
|
50 |
-
@app.post("/cosine_similarity")
|
51 |
async def compute_similarity(input_data: CosineSimilarityInput):
|
52 |
"""
|
53 |
Compute cosine similarity between two input texts.
|
54 |
"""
|
55 |
try:
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
|
|
|
|
|
|
60 |
except Exception as e:
|
61 |
raise HTTPException(status_code=500, detail=f"Error computing similarity: {str(e)}")
|
62 |
|
63 |
-
#
|
64 |
-
@app.post("/
|
65 |
-
async def
|
66 |
"""
|
67 |
-
|
68 |
"""
|
69 |
try:
|
70 |
-
#
|
71 |
-
|
72 |
-
|
73 |
-
raise HTTPException(status_code=400, detail="Input message cannot be empty")
|
74 |
-
|
75 |
-
# Encode input text
|
76 |
-
input_embedding = model.encode(text_input, convert_to_tensor=True).cpu().numpy()
|
77 |
-
|
78 |
-
# Compute similarity scores
|
79 |
-
transactional_scores = [cosine_similarity(input_embedding, emb) for emb in transactional_embeddings]
|
80 |
-
offer_scores = [cosine_similarity(input_embedding, emb) for emb in offer_embeddings]
|
81 |
-
|
82 |
-
# Get max similarity
|
83 |
-
max_transactional = max(transactional_scores, default=0)
|
84 |
-
max_offer = max(offer_scores, default=0)
|
85 |
-
|
86 |
-
# Determine label and probability
|
87 |
-
if max_transactional > max_offer:
|
88 |
-
label = "Transaction"
|
89 |
-
|
90 |
-
else:
|
91 |
-
label = "Offer"
|
92 |
-
|
93 |
-
return {
|
94 |
-
"label": label
|
95 |
-
}
|
96 |
-
|
97 |
except Exception as e:
|
98 |
-
raise HTTPException(status_code=500, detail=f"
|
99 |
-
|
100 |
-
|
|
|
1 |
+
# app/main.py
|
2 |
from fastapi import FastAPI, HTTPException
|
3 |
from pydantic import BaseModel
|
|
|
4 |
import numpy as np
|
5 |
+
from linear.services.sms_service import classify_sms, load_trained_model
|
6 |
+
from linear.schemas.input_schemas import CosineSimilarityInput, CosineSimilarityOutput
|
7 |
+
from linear.schemas.input_schemas import EmbeddingInput, EmbeddingOutput
|
8 |
|
9 |
# Initialize FastAPI
|
10 |
app = FastAPI()
|
11 |
|
12 |
+
# Load the models from the 'models' folder
|
13 |
+
model, vectorizer = load_trained_model()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
# Function to compute cosine similarity
|
16 |
def cosine_similarity(vec1, vec2):
|
17 |
+
"""
|
18 |
+
Compute cosine similarity between two vectors.
|
19 |
+
"""
|
20 |
norm1 = np.linalg.norm(vec1)
|
21 |
norm2 = np.linalg.norm(vec2)
|
22 |
if norm1 == 0 or norm2 == 0:
|
|
|
26 |
# π 1οΈβ£ Homepage Endpoint
|
27 |
@app.get("/")
|
28 |
async def home():
|
29 |
+
return {"message": "Welcome to SMS Classification API"}
|
30 |
+
|
31 |
+
# π© 2οΈβ£ SMS Classification Endpoint
|
32 |
+
class MessageInput(BaseModel):
|
33 |
+
message: str
|
34 |
+
|
35 |
+
@app.post("/predict_label/")
|
36 |
+
async def classify_sms_endpoint(input_data: MessageInput):
|
37 |
+
"""
|
38 |
+
Classify an SMS as either 'Transaction' or 'Offer'.
|
39 |
+
"""
|
40 |
+
try:
|
41 |
+
return classify_sms(input_data.message, model, vectorizer)
|
42 |
+
except Exception as e:
|
43 |
+
raise HTTPException(status_code=500, detail=f"Unexpected error: {str(e)}")
|
44 |
|
45 |
+
# π’ 3οΈβ£ Cosine Similarity Endpoint
|
46 |
+
@app.post("/cosine_similarity/", response_model=CosineSimilarityOutput)
|
47 |
async def compute_similarity(input_data: CosineSimilarityInput):
|
48 |
"""
|
49 |
Compute cosine similarity between two input texts.
|
50 |
"""
|
51 |
try:
|
52 |
+
# Transform the input texts using the TF-IDF vectorizer
|
53 |
+
text1_vectorized = vectorizer.transform([input_data.text1])
|
54 |
+
text2_vectorized = vectorizer.transform([input_data.text2])
|
55 |
+
|
56 |
+
# Compute the cosine similarity between the two text embeddings
|
57 |
+
similarity = cosine_similarity(text1_vectorized.toarray(), text2_vectorized.toarray())
|
58 |
+
return CosineSimilarityOutput(cosine_similarity=round(float(similarity), 4))
|
59 |
except Exception as e:
|
60 |
raise HTTPException(status_code=500, detail=f"Error computing similarity: {str(e)}")
|
61 |
|
62 |
+
# π§ 4οΈβ£ Get Embedding of Text Message
|
63 |
+
@app.post("/get_embedding/", response_model=EmbeddingOutput)
|
64 |
+
async def get_embedding(input_data: EmbeddingInput):
|
65 |
"""
|
66 |
+
Get the embedding (vector representation) of an input text message.
|
67 |
"""
|
68 |
try:
|
69 |
+
# Transform the input text using the TF-IDF vectorizer
|
70 |
+
text_embedding = vectorizer.transform([input_data.message]).toarray().tolist()
|
71 |
+
return EmbeddingOutput(embedding=text_embedding[0])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
except Exception as e:
|
73 |
+
raise HTTPException(status_code=500, detail=f"Error generating embedding: {str(e)}")
|
|
|
|
models/sms_classifier_model.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4c2b852be29075447f1306196af754cb31984406f591abc7891815e3b7c0e972
|
3 |
+
size 21305
|
models/tfidf_vectorizer.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5cebef878c5c22a6e58d1e80484d053b18402989ba83bbea4ce766ec3ace1bc6
|
3 |
+
size 93623
|
schemas/input_schemas.py
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# app/schemas/input_schemas.py
|
2 |
+
from pydantic import BaseModel
|
3 |
+
|
4 |
+
class CosineSimilarityInput(BaseModel):
|
5 |
+
text1: str
|
6 |
+
text2: str
|
7 |
+
|
8 |
+
class MessageInput(BaseModel):
|
9 |
+
message: str
|
10 |
+
|
11 |
+
|
12 |
+
|
13 |
+
class CosineSimilarityResponse(BaseModel):
|
14 |
+
cosine_similarity: float
|
15 |
+
|
16 |
+
|
17 |
+
class EmbeddingResponse(BaseModel):
|
18 |
+
embeddings: list
|
19 |
+
|
services/sms_service.py
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# app/services/sms_service.py
|
2 |
+
import pickle
|
3 |
+
import numpy as np
|
4 |
+
from sklearn.feature_extraction.text import TfidfVectorizer
|
5 |
+
from fastapi import HTTPException
|
6 |
+
from linear.schemas.input_schemas import CosineSimilarityResponse
|
7 |
+
from linear.schemas.input_schemas import EmbeddingResponse
|
8 |
+
|
9 |
+
# Load the trained model and vectorizer
|
10 |
+
def load_model():
|
11 |
+
model_path = "models/sms_classifier_model.pkl"
|
12 |
+
vectorizer_path = "models/tfidf_vectorizer.pkl"
|
13 |
+
|
14 |
+
try:
|
15 |
+
with open(model_path, 'rb') as f:
|
16 |
+
classifier = pickle.load(f)
|
17 |
+
|
18 |
+
with open(vectorizer_path, 'rb') as f:
|
19 |
+
vectorizer = pickle.load(f)
|
20 |
+
|
21 |
+
return classifier, vectorizer
|
22 |
+
except Exception as e:
|
23 |
+
raise HTTPException(status_code=500, detail=f"Error loading model: {str(e)}")
|
24 |
+
|
25 |
+
async def predict_label(message: str):
|
26 |
+
try:
|
27 |
+
classifier, vectorizer = load_model()
|
28 |
+
# Vectorize the input message
|
29 |
+
message_vec = vectorizer.transform([message])
|
30 |
+
|
31 |
+
# Predict the label
|
32 |
+
label = classifier.predict(message_vec)[0]
|
33 |
+
return {"label": label}
|
34 |
+
except Exception as e:
|
35 |
+
raise HTTPException(status_code=500, detail=f"Error predicting label: {str(e)}")
|
36 |
+
|
37 |
+
async def compute_cosine_similarity(text1: str, text2: str):
|
38 |
+
try:
|
39 |
+
classifier, vectorizer = load_model()
|
40 |
+
|
41 |
+
# Vectorize the input texts
|
42 |
+
vec1 = vectorizer.transform([text1]).toarray()
|
43 |
+
vec2 = vectorizer.transform([text2]).toarray()
|
44 |
+
|
45 |
+
# Compute cosine similarity
|
46 |
+
cosine_sim = np.dot(vec1, vec2.T) / (np.linalg.norm(vec1) * np.linalg.norm(vec2))
|
47 |
+
return CosineSimilarityResponse(cosine_similarity=cosine_sim[0][0])
|
48 |
+
except Exception as e:
|
49 |
+
raise HTTPException(status_code=500, detail=f"Error computing similarity: {str(e)}")
|
50 |
+
|
51 |
+
async def compute_embeddings(message: str):
|
52 |
+
try:
|
53 |
+
classifier, vectorizer = load_model()
|
54 |
+
|
55 |
+
# Vectorize the input message
|
56 |
+
embedding = vectorizer.transform([message]).toarray().tolist()
|
57 |
+
return EmbeddingResponse(embeddings=embedding)
|
58 |
+
except Exception as e:
|
59 |
+
raise HTTPException(status_code=500, detail=f"Error computing embeddings: {str(e)}")
|
services/train_model.py
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# app/services/train_model.py
|
2 |
+
import pandas as pd
|
3 |
+
from sklearn.feature_extraction.text import TfidfVectorizer
|
4 |
+
from sklearn.linear_model import LogisticRegression
|
5 |
+
from sklearn.model_selection import train_test_split
|
6 |
+
import pickle
|
7 |
+
import os
|
8 |
+
|
9 |
+
# Load the dataset
|
10 |
+
file_path = "data/sms_process_data_main.xlsx"
|
11 |
+
df = pd.read_excel(file_path)
|
12 |
+
|
13 |
+
# Prepare the features and labels
|
14 |
+
X = df['MessageText'] # SMS messages
|
15 |
+
y = df['label'] # Labels: 'Transaction' or 'Offer'
|
16 |
+
|
17 |
+
# Split the data into training and testing sets
|
18 |
+
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
|
19 |
+
|
20 |
+
# Initialize the TF-IDF Vectorizer
|
21 |
+
vectorizer = TfidfVectorizer(max_features=5000)
|
22 |
+
|
23 |
+
# Fit the vectorizer on the training data and transform the training data
|
24 |
+
X_train_vec = vectorizer.fit_transform(X_train)
|
25 |
+
|
26 |
+
# Initialize and train the logistic regression model
|
27 |
+
classifier = LogisticRegression()
|
28 |
+
classifier.fit(X_train_vec, y_train)
|
29 |
+
|
30 |
+
# Save the trained model and vectorizer
|
31 |
+
models_dir = "models"
|
32 |
+
if not os.path.exists(models_dir):
|
33 |
+
os.makedirs(models_dir)
|
34 |
+
|
35 |
+
# Save the classifier model
|
36 |
+
with open(os.path.join(models_dir, 'sms_classifier_model.pkl'), 'wb') as model_file:
|
37 |
+
pickle.dump(classifier, model_file)
|
38 |
+
|
39 |
+
# Save the vectorizer
|
40 |
+
with open(os.path.join(models_dir, 'tfidf_vectorizer.pkl'), 'wb') as vectorizer_file:
|
41 |
+
pickle.dump(vectorizer, vectorizer_file)
|
42 |
+
|
43 |
+
print("Model and vectorizer saved successfully!")
|