sms
Browse files- app.py +52 -0
- requirements.txt +5 -0
app.py
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import torch
|
4 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
5 |
+
import matplotlib.pyplot as plt
|
6 |
+
|
7 |
+
# Load model and tokenizer
|
8 |
+
model_name = "tabularisai/multilingual-sentiment-analysis"
|
9 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
10 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
11 |
+
|
12 |
+
def predict_sentiment(texts):
|
13 |
+
inputs = tokenizer(texts, return_tensors="pt", truncation=True, padding=True, max_length=512)
|
14 |
+
with torch.no_grad():
|
15 |
+
outputs = model(**inputs)
|
16 |
+
probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1)
|
17 |
+
sentiment_map = {0: "Very Negative", 1: "Negative", 2: "Neutral", 3: "Positive", 4: "Very Positive"}
|
18 |
+
return [sentiment_map[p] for p in torch.argmax(probabilities, dim=-1).tolist()]
|
19 |
+
|
20 |
+
# Streamlit UI
|
21 |
+
st.title("Sentiment Analysis App")
|
22 |
+
st.write("Upload an Excel file containing text data, and we'll analyze its sentiment.")
|
23 |
+
|
24 |
+
uploaded_file = st.file_uploader("Upload Excel File", type=["xlsx", "xls"])
|
25 |
+
|
26 |
+
if uploaded_file is not None:
|
27 |
+
df = pd.read_excel(uploaded_file)
|
28 |
+
st.write("Preview of Uploaded Data:")
|
29 |
+
st.dataframe(df.head())
|
30 |
+
|
31 |
+
text_column = st.selectbox("Select the column containing text", df.columns)
|
32 |
+
|
33 |
+
if st.button("Analyze Sentiment"):
|
34 |
+
df["Sentiment"] = predict_sentiment(df[text_column].astype(str).tolist())
|
35 |
+
|
36 |
+
# Display results
|
37 |
+
st.write("Sentiment Analysis Results:")
|
38 |
+
st.dataframe(df[[text_column, "Sentiment"]])
|
39 |
+
|
40 |
+
# Pie chart
|
41 |
+
sentiment_counts = df["Sentiment"].value_counts()
|
42 |
+
fig, ax = plt.subplots()
|
43 |
+
ax.pie(sentiment_counts, labels=sentiment_counts.index, autopct='%1.1f%%', colors=["red", "yellow", "pink", "lightgreen", "green"])
|
44 |
+
ax.set_title("Sentiment Distribution")
|
45 |
+
st.pyplot(fig)
|
46 |
+
|
47 |
+
# Table display for sentiment analysis results
|
48 |
+
st.write("Detailed Sentiment Table:")
|
49 |
+
st.table(df[[text_column, "Sentiment"]])
|
50 |
+
|
51 |
+
# Download option
|
52 |
+
st.download_button("Download Results", df.to_csv(index=False).encode('utf-8'), "sentiment_results.csv", "text/csv")
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch --index-url https://download.pytorch.org/whl/cpu
|
2 |
+
transformers
|
3 |
+
streamlit
|
4 |
+
pandas
|
5 |
+
matplotlib
|