import streamlit as st import pandas as pd import torch from transformers import AutoTokenizer, AutoModelForSequenceClassification import matplotlib.pyplot as plt # Load model and tokenizer model_name = "tabularisai/multilingual-sentiment-analysis" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSequenceClassification.from_pretrained(model_name) def predict_sentiment(texts): inputs = tokenizer(texts, return_tensors="pt", truncation=True, padding=True, max_length=512) with torch.no_grad(): outputs = model(**inputs) probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1) sentiment_map = {0: "Very Negative", 1: "Negative", 2: "Neutral", 3: "Positive", 4: "Very Positive"} return [sentiment_map[p] for p in torch.argmax(probabilities, dim=-1).tolist()] # Streamlit UI st.title("Sentiment Analysis App") st.write("Upload an Excel file containing text data, and we'll analyze its sentiment.") uploaded_file = st.file_uploader("Upload Excel File", type=["xlsx", "xls"]) if uploaded_file is not None: df = pd.read_excel(uploaded_file) st.write("Preview of Uploaded Data:") st.dataframe(df.head()) text_column = st.selectbox("Select the column containing text", df.columns) if st.button("Analyze Sentiment"): df["Sentiment"] = predict_sentiment(df[text_column].astype(str).tolist()) # Display results st.write("Sentiment Analysis Results:") st.dataframe(df[[text_column, "Sentiment"]]) # Pie chart sentiment_counts = df["Sentiment"].value_counts() fig, ax = plt.subplots() ax.pie(sentiment_counts, labels=sentiment_counts.index, autopct='%1.1f%%', colors=["red", "yellow", "pink", "lightgreen", "green"]) ax.set_title("Sentiment Distribution") st.pyplot(fig) # Table display for sentiment analysis results st.write("Detailed Sentiment Table:") st.table(df[[text_column, "Sentiment"]]) # Download option st.download_button("Download Results", df.to_csv(index=False).encode('utf-8'), "sentiment_results.csv", "text/csv")