|
import argparse |
|
import random |
|
from pathlib import Path |
|
|
|
import numpy as np |
|
import torch |
|
from lightning import LightningModule |
|
|
|
from matcha.cli import VOCODER_URLS, load_matcha, load_vocoder |
|
|
|
DEFAULT_OPSET = 15 |
|
|
|
SEED = 1234 |
|
random.seed(SEED) |
|
np.random.seed(SEED) |
|
torch.manual_seed(SEED) |
|
torch.cuda.manual_seed(SEED) |
|
torch.backends.cudnn.deterministic = True |
|
torch.backends.cudnn.benchmark = False |
|
|
|
|
|
class MatchaWithVocoder(LightningModule): |
|
def __init__(self, matcha, vocoder): |
|
super().__init__() |
|
self.matcha = matcha |
|
self.vocoder = vocoder |
|
|
|
def forward(self, x, x_lengths, scales, spks=None): |
|
mel, mel_lengths = self.matcha(x, x_lengths, scales, spks) |
|
wavs = self.vocoder(mel).clamp(-1, 1) |
|
lengths = mel_lengths * 256 |
|
return wavs.squeeze(1), lengths |
|
|
|
|
|
def get_exportable_module(matcha, vocoder, n_timesteps): |
|
""" |
|
Return an appropriate `LighteningModule` and output-node names |
|
based on whether the vocoder is embedded in the final graph |
|
""" |
|
|
|
def onnx_forward_func(x, x_lengths, scales, spks=None): |
|
""" |
|
Custom forward function for accepting |
|
scaler parameters as tensors |
|
""" |
|
|
|
temperature = scales[0] |
|
length_scale = scales[1] |
|
output = matcha.synthesise(x, x_lengths, n_timesteps, temperature, spks, length_scale) |
|
return output["mel"], output["mel_lengths"] |
|
|
|
|
|
matcha.forward = onnx_forward_func |
|
|
|
if vocoder is None: |
|
model, output_names = matcha, ["mel", "mel_lengths"] |
|
else: |
|
model = MatchaWithVocoder(matcha, vocoder) |
|
output_names = ["wav", "wav_lengths"] |
|
return model, output_names |
|
|
|
|
|
def get_inputs(is_multi_speaker): |
|
""" |
|
Create dummy inputs for tracing |
|
""" |
|
dummy_input_length = 50 |
|
x = torch.randint(low=0, high=20, size=(1, dummy_input_length), dtype=torch.long) |
|
x_lengths = torch.LongTensor([dummy_input_length]) |
|
|
|
|
|
temperature = 0.667 |
|
length_scale = 1.0 |
|
scales = torch.Tensor([temperature, length_scale]) |
|
|
|
model_inputs = [x, x_lengths, scales] |
|
input_names = [ |
|
"x", |
|
"x_lengths", |
|
"scales", |
|
] |
|
|
|
if is_multi_speaker: |
|
spks = torch.LongTensor([1]) |
|
model_inputs.append(spks) |
|
input_names.append("spks") |
|
|
|
return tuple(model_inputs), input_names |
|
|
|
|
|
def main(): |
|
parser = argparse.ArgumentParser(description="Export π΅ Matcha-TTS to ONNX") |
|
|
|
parser.add_argument( |
|
"checkpoint_path", |
|
type=str, |
|
help="Path to the model checkpoint", |
|
) |
|
parser.add_argument("output", type=str, help="Path to output `.onnx` file") |
|
parser.add_argument( |
|
"--n-timesteps", type=int, default=5, help="Number of steps to use for reverse diffusion in decoder (default 5)" |
|
) |
|
parser.add_argument( |
|
"--vocoder-name", |
|
type=str, |
|
choices=list(VOCODER_URLS.keys()), |
|
default=None, |
|
help="Name of the vocoder to embed in the ONNX graph", |
|
) |
|
parser.add_argument( |
|
"--vocoder-checkpoint-path", |
|
type=str, |
|
default=None, |
|
help="Vocoder checkpoint to embed in the ONNX graph for an `e2e` like experience", |
|
) |
|
parser.add_argument("--opset", type=int, default=DEFAULT_OPSET, help="ONNX opset version to use (default 15") |
|
|
|
args = parser.parse_args() |
|
|
|
print(f"[π΅] Loading Matcha checkpoint from {args.checkpoint_path}") |
|
print(f"Setting n_timesteps to {args.n_timesteps}") |
|
|
|
checkpoint_path = Path(args.checkpoint_path) |
|
matcha = load_matcha(checkpoint_path.stem, checkpoint_path, "cpu") |
|
|
|
if args.vocoder_name or args.vocoder_checkpoint_path: |
|
assert ( |
|
args.vocoder_name and args.vocoder_checkpoint_path |
|
), "Both vocoder_name and vocoder-checkpoint are required when embedding the vocoder in the ONNX graph." |
|
vocoder, _ = load_vocoder(args.vocoder_name, args.vocoder_checkpoint_path, "cpu") |
|
else: |
|
vocoder = None |
|
|
|
is_multi_speaker = matcha.n_spks > 1 |
|
|
|
dummy_input, input_names = get_inputs(is_multi_speaker) |
|
model, output_names = get_exportable_module(matcha, vocoder, args.n_timesteps) |
|
|
|
|
|
dynamic_axes = { |
|
"x": {0: "batch_size", 1: "time"}, |
|
"x_lengths": {0: "batch_size"}, |
|
} |
|
|
|
if vocoder is None: |
|
dynamic_axes.update( |
|
{ |
|
"mel": {0: "batch_size", 2: "time"}, |
|
"mel_lengths": {0: "batch_size"}, |
|
} |
|
) |
|
else: |
|
print("Embedding the vocoder in the ONNX graph") |
|
dynamic_axes.update( |
|
{ |
|
"wav": {0: "batch_size", 1: "time"}, |
|
"wav_lengths": {0: "batch_size"}, |
|
} |
|
) |
|
|
|
if is_multi_speaker: |
|
dynamic_axes["spks"] = {0: "batch_size"} |
|
|
|
|
|
Path(args.output).parent.mkdir(parents=True, exist_ok=True) |
|
|
|
model.to_onnx( |
|
args.output, |
|
dummy_input, |
|
input_names=input_names, |
|
output_names=output_names, |
|
dynamic_axes=dynamic_axes, |
|
opset_version=args.opset, |
|
export_params=True, |
|
do_constant_folding=True, |
|
) |
|
print(f"[π΅] ONNX model exported to {args.output}") |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|