Upload 9 files
Browse files- libs/infer_packs/attentions.py +459 -459
- libs/infer_packs/models.py +2 -2
- libs/infer_packs/modules.py +3 -3
libs/infer_packs/attentions.py
CHANGED
@@ -1,459 +1,459 @@
|
|
1 |
-
import copy
|
2 |
-
import math
|
3 |
-
from typing import Optional
|
4 |
-
|
5 |
-
import numpy as np
|
6 |
-
import torch
|
7 |
-
from torch import nn
|
8 |
-
from torch.nn import functional as F
|
9 |
-
|
10 |
-
from
|
11 |
-
from
|
12 |
-
|
13 |
-
|
14 |
-
class Encoder(nn.Module):
|
15 |
-
def __init__(
|
16 |
-
self,
|
17 |
-
hidden_channels,
|
18 |
-
filter_channels,
|
19 |
-
n_heads,
|
20 |
-
n_layers,
|
21 |
-
kernel_size=1,
|
22 |
-
p_dropout=0.0,
|
23 |
-
window_size=10,
|
24 |
-
**kwargs
|
25 |
-
):
|
26 |
-
super(Encoder, self).__init__()
|
27 |
-
self.hidden_channels = hidden_channels
|
28 |
-
self.filter_channels = filter_channels
|
29 |
-
self.n_heads = n_heads
|
30 |
-
self.n_layers = int(n_layers)
|
31 |
-
self.kernel_size = kernel_size
|
32 |
-
self.p_dropout = p_dropout
|
33 |
-
self.window_size = window_size
|
34 |
-
|
35 |
-
self.drop = nn.Dropout(p_dropout)
|
36 |
-
self.attn_layers = nn.ModuleList()
|
37 |
-
self.norm_layers_1 = nn.ModuleList()
|
38 |
-
self.ffn_layers = nn.ModuleList()
|
39 |
-
self.norm_layers_2 = nn.ModuleList()
|
40 |
-
for i in range(self.n_layers):
|
41 |
-
self.attn_layers.append(
|
42 |
-
MultiHeadAttention(
|
43 |
-
hidden_channels,
|
44 |
-
hidden_channels,
|
45 |
-
n_heads,
|
46 |
-
p_dropout=p_dropout,
|
47 |
-
window_size=window_size,
|
48 |
-
)
|
49 |
-
)
|
50 |
-
self.norm_layers_1.append(LayerNorm(hidden_channels))
|
51 |
-
self.ffn_layers.append(
|
52 |
-
FFN(
|
53 |
-
hidden_channels,
|
54 |
-
hidden_channels,
|
55 |
-
filter_channels,
|
56 |
-
kernel_size,
|
57 |
-
p_dropout=p_dropout,
|
58 |
-
)
|
59 |
-
)
|
60 |
-
self.norm_layers_2.append(LayerNorm(hidden_channels))
|
61 |
-
|
62 |
-
def forward(self, x, x_mask):
|
63 |
-
attn_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
|
64 |
-
x = x * x_mask
|
65 |
-
zippep = zip(
|
66 |
-
self.attn_layers, self.norm_layers_1, self.ffn_layers, self.norm_layers_2
|
67 |
-
)
|
68 |
-
for attn_layers, norm_layers_1, ffn_layers, norm_layers_2 in zippep:
|
69 |
-
y = attn_layers(x, x, attn_mask)
|
70 |
-
y = self.drop(y)
|
71 |
-
x = norm_layers_1(x + y)
|
72 |
-
|
73 |
-
y = ffn_layers(x, x_mask)
|
74 |
-
y = self.drop(y)
|
75 |
-
x = norm_layers_2(x + y)
|
76 |
-
x = x * x_mask
|
77 |
-
return x
|
78 |
-
|
79 |
-
|
80 |
-
class Decoder(nn.Module):
|
81 |
-
def __init__(
|
82 |
-
self,
|
83 |
-
hidden_channels,
|
84 |
-
filter_channels,
|
85 |
-
n_heads,
|
86 |
-
n_layers,
|
87 |
-
kernel_size=1,
|
88 |
-
p_dropout=0.0,
|
89 |
-
proximal_bias=False,
|
90 |
-
proximal_init=True,
|
91 |
-
**kwargs
|
92 |
-
):
|
93 |
-
super(Decoder, self).__init__()
|
94 |
-
self.hidden_channels = hidden_channels
|
95 |
-
self.filter_channels = filter_channels
|
96 |
-
self.n_heads = n_heads
|
97 |
-
self.n_layers = n_layers
|
98 |
-
self.kernel_size = kernel_size
|
99 |
-
self.p_dropout = p_dropout
|
100 |
-
self.proximal_bias = proximal_bias
|
101 |
-
self.proximal_init = proximal_init
|
102 |
-
|
103 |
-
self.drop = nn.Dropout(p_dropout)
|
104 |
-
self.self_attn_layers = nn.ModuleList()
|
105 |
-
self.norm_layers_0 = nn.ModuleList()
|
106 |
-
self.encdec_attn_layers = nn.ModuleList()
|
107 |
-
self.norm_layers_1 = nn.ModuleList()
|
108 |
-
self.ffn_layers = nn.ModuleList()
|
109 |
-
self.norm_layers_2 = nn.ModuleList()
|
110 |
-
for i in range(self.n_layers):
|
111 |
-
self.self_attn_layers.append(
|
112 |
-
MultiHeadAttention(
|
113 |
-
hidden_channels,
|
114 |
-
hidden_channels,
|
115 |
-
n_heads,
|
116 |
-
p_dropout=p_dropout,
|
117 |
-
proximal_bias=proximal_bias,
|
118 |
-
proximal_init=proximal_init,
|
119 |
-
)
|
120 |
-
)
|
121 |
-
self.norm_layers_0.append(LayerNorm(hidden_channels))
|
122 |
-
self.encdec_attn_layers.append(
|
123 |
-
MultiHeadAttention(
|
124 |
-
hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout
|
125 |
-
)
|
126 |
-
)
|
127 |
-
self.norm_layers_1.append(LayerNorm(hidden_channels))
|
128 |
-
self.ffn_layers.append(
|
129 |
-
FFN(
|
130 |
-
hidden_channels,
|
131 |
-
hidden_channels,
|
132 |
-
filter_channels,
|
133 |
-
kernel_size,
|
134 |
-
p_dropout=p_dropout,
|
135 |
-
causal=True,
|
136 |
-
)
|
137 |
-
)
|
138 |
-
self.norm_layers_2.append(LayerNorm(hidden_channels))
|
139 |
-
|
140 |
-
def forward(self, x, x_mask, h, h_mask):
|
141 |
-
"""
|
142 |
-
x: decoder input
|
143 |
-
h: encoder output
|
144 |
-
"""
|
145 |
-
self_attn_mask = commons.subsequent_mask(x_mask.size(2)).to(
|
146 |
-
device=x.device, dtype=x.dtype
|
147 |
-
)
|
148 |
-
encdec_attn_mask = h_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
|
149 |
-
x = x * x_mask
|
150 |
-
for i in range(self.n_layers):
|
151 |
-
y = self.self_attn_layers[i](x, x, self_attn_mask)
|
152 |
-
y = self.drop(y)
|
153 |
-
x = self.norm_layers_0[i](x + y)
|
154 |
-
|
155 |
-
y = self.encdec_attn_layers[i](x, h, encdec_attn_mask)
|
156 |
-
y = self.drop(y)
|
157 |
-
x = self.norm_layers_1[i](x + y)
|
158 |
-
|
159 |
-
y = self.ffn_layers[i](x, x_mask)
|
160 |
-
y = self.drop(y)
|
161 |
-
x = self.norm_layers_2[i](x + y)
|
162 |
-
x = x * x_mask
|
163 |
-
return x
|
164 |
-
|
165 |
-
|
166 |
-
class MultiHeadAttention(nn.Module):
|
167 |
-
def __init__(
|
168 |
-
self,
|
169 |
-
channels,
|
170 |
-
out_channels,
|
171 |
-
n_heads,
|
172 |
-
p_dropout=0.0,
|
173 |
-
window_size=None,
|
174 |
-
heads_share=True,
|
175 |
-
block_length=None,
|
176 |
-
proximal_bias=False,
|
177 |
-
proximal_init=False,
|
178 |
-
):
|
179 |
-
super(MultiHeadAttention, self).__init__()
|
180 |
-
assert channels % n_heads == 0
|
181 |
-
|
182 |
-
self.channels = channels
|
183 |
-
self.out_channels = out_channels
|
184 |
-
self.n_heads = n_heads
|
185 |
-
self.p_dropout = p_dropout
|
186 |
-
self.window_size = window_size
|
187 |
-
self.heads_share = heads_share
|
188 |
-
self.block_length = block_length
|
189 |
-
self.proximal_bias = proximal_bias
|
190 |
-
self.proximal_init = proximal_init
|
191 |
-
self.attn = None
|
192 |
-
|
193 |
-
self.k_channels = channels // n_heads
|
194 |
-
self.conv_q = nn.Conv1d(channels, channels, 1)
|
195 |
-
self.conv_k = nn.Conv1d(channels, channels, 1)
|
196 |
-
self.conv_v = nn.Conv1d(channels, channels, 1)
|
197 |
-
self.conv_o = nn.Conv1d(channels, out_channels, 1)
|
198 |
-
self.drop = nn.Dropout(p_dropout)
|
199 |
-
|
200 |
-
if window_size is not None:
|
201 |
-
n_heads_rel = 1 if heads_share else n_heads
|
202 |
-
rel_stddev = self.k_channels**-0.5
|
203 |
-
self.emb_rel_k = nn.Parameter(
|
204 |
-
torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels)
|
205 |
-
* rel_stddev
|
206 |
-
)
|
207 |
-
self.emb_rel_v = nn.Parameter(
|
208 |
-
torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels)
|
209 |
-
* rel_stddev
|
210 |
-
)
|
211 |
-
|
212 |
-
nn.init.xavier_uniform_(self.conv_q.weight)
|
213 |
-
nn.init.xavier_uniform_(self.conv_k.weight)
|
214 |
-
nn.init.xavier_uniform_(self.conv_v.weight)
|
215 |
-
if proximal_init:
|
216 |
-
with torch.no_grad():
|
217 |
-
self.conv_k.weight.copy_(self.conv_q.weight)
|
218 |
-
self.conv_k.bias.copy_(self.conv_q.bias)
|
219 |
-
|
220 |
-
def forward(
|
221 |
-
self, x: torch.Tensor, c: torch.Tensor, attn_mask: Optional[torch.Tensor] = None
|
222 |
-
):
|
223 |
-
q = self.conv_q(x)
|
224 |
-
k = self.conv_k(c)
|
225 |
-
v = self.conv_v(c)
|
226 |
-
|
227 |
-
x, _ = self.attention(q, k, v, mask=attn_mask)
|
228 |
-
|
229 |
-
x = self.conv_o(x)
|
230 |
-
return x
|
231 |
-
|
232 |
-
def attention(
|
233 |
-
self,
|
234 |
-
query: torch.Tensor,
|
235 |
-
key: torch.Tensor,
|
236 |
-
value: torch.Tensor,
|
237 |
-
mask: Optional[torch.Tensor] = None,
|
238 |
-
):
|
239 |
-
# reshape [b, d, t] -> [b, n_h, t, d_k]
|
240 |
-
b, d, t_s = key.size()
|
241 |
-
t_t = query.size(2)
|
242 |
-
query = query.view(b, self.n_heads, self.k_channels, t_t).transpose(2, 3)
|
243 |
-
key = key.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
|
244 |
-
value = value.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
|
245 |
-
|
246 |
-
scores = torch.matmul(query / math.sqrt(self.k_channels), key.transpose(-2, -1))
|
247 |
-
if self.window_size is not None:
|
248 |
-
assert (
|
249 |
-
t_s == t_t
|
250 |
-
), "Relative attention is only available for self-attention."
|
251 |
-
key_relative_embeddings = self._get_relative_embeddings(self.emb_rel_k, t_s)
|
252 |
-
rel_logits = self._matmul_with_relative_keys(
|
253 |
-
query / math.sqrt(self.k_channels), key_relative_embeddings
|
254 |
-
)
|
255 |
-
scores_local = self._relative_position_to_absolute_position(rel_logits)
|
256 |
-
scores = scores + scores_local
|
257 |
-
if self.proximal_bias:
|
258 |
-
assert t_s == t_t, "Proximal bias is only available for self-attention."
|
259 |
-
scores = scores + self._attention_bias_proximal(t_s).to(
|
260 |
-
device=scores.device, dtype=scores.dtype
|
261 |
-
)
|
262 |
-
if mask is not None:
|
263 |
-
scores = scores.masked_fill(mask == 0, -1e4)
|
264 |
-
if self.block_length is not None:
|
265 |
-
assert (
|
266 |
-
t_s == t_t
|
267 |
-
), "Local attention is only available for self-attention."
|
268 |
-
block_mask = (
|
269 |
-
torch.ones_like(scores)
|
270 |
-
.triu(-self.block_length)
|
271 |
-
.tril(self.block_length)
|
272 |
-
)
|
273 |
-
scores = scores.masked_fill(block_mask == 0, -1e4)
|
274 |
-
p_attn = F.softmax(scores, dim=-1) # [b, n_h, t_t, t_s]
|
275 |
-
p_attn = self.drop(p_attn)
|
276 |
-
output = torch.matmul(p_attn, value)
|
277 |
-
if self.window_size is not None:
|
278 |
-
relative_weights = self._absolute_position_to_relative_position(p_attn)
|
279 |
-
value_relative_embeddings = self._get_relative_embeddings(
|
280 |
-
self.emb_rel_v, t_s
|
281 |
-
)
|
282 |
-
output = output + self._matmul_with_relative_values(
|
283 |
-
relative_weights, value_relative_embeddings
|
284 |
-
)
|
285 |
-
output = (
|
286 |
-
output.transpose(2, 3).contiguous().view(b, d, t_t)
|
287 |
-
) # [b, n_h, t_t, d_k] -> [b, d, t_t]
|
288 |
-
return output, p_attn
|
289 |
-
|
290 |
-
def _matmul_with_relative_values(self, x, y):
|
291 |
-
"""
|
292 |
-
x: [b, h, l, m]
|
293 |
-
y: [h or 1, m, d]
|
294 |
-
ret: [b, h, l, d]
|
295 |
-
"""
|
296 |
-
ret = torch.matmul(x, y.unsqueeze(0))
|
297 |
-
return ret
|
298 |
-
|
299 |
-
def _matmul_with_relative_keys(self, x, y):
|
300 |
-
"""
|
301 |
-
x: [b, h, l, d]
|
302 |
-
y: [h or 1, m, d]
|
303 |
-
ret: [b, h, l, m]
|
304 |
-
"""
|
305 |
-
ret = torch.matmul(x, y.unsqueeze(0).transpose(-2, -1))
|
306 |
-
return ret
|
307 |
-
|
308 |
-
def _get_relative_embeddings(self, relative_embeddings, length: int):
|
309 |
-
max_relative_position = 2 * self.window_size + 1
|
310 |
-
# Pad first before slice to avoid using cond ops.
|
311 |
-
pad_length: int = max(length - (self.window_size + 1), 0)
|
312 |
-
slice_start_position = max((self.window_size + 1) - length, 0)
|
313 |
-
slice_end_position = slice_start_position + 2 * length - 1
|
314 |
-
if pad_length > 0:
|
315 |
-
padded_relative_embeddings = F.pad(
|
316 |
-
relative_embeddings,
|
317 |
-
# commons.convert_pad_shape([[0, 0], [pad_length, pad_length], [0, 0]]),
|
318 |
-
[0, 0, pad_length, pad_length, 0, 0],
|
319 |
-
)
|
320 |
-
else:
|
321 |
-
padded_relative_embeddings = relative_embeddings
|
322 |
-
used_relative_embeddings = padded_relative_embeddings[
|
323 |
-
:, slice_start_position:slice_end_position
|
324 |
-
]
|
325 |
-
return used_relative_embeddings
|
326 |
-
|
327 |
-
def _relative_position_to_absolute_position(self, x):
|
328 |
-
"""
|
329 |
-
x: [b, h, l, 2*l-1]
|
330 |
-
ret: [b, h, l, l]
|
331 |
-
"""
|
332 |
-
batch, heads, length, _ = x.size()
|
333 |
-
# Concat columns of pad to shift from relative to absolute indexing.
|
334 |
-
x = F.pad(
|
335 |
-
x,
|
336 |
-
# commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, 1]])
|
337 |
-
[0, 1, 0, 0, 0, 0, 0, 0],
|
338 |
-
)
|
339 |
-
|
340 |
-
# Concat extra elements so to add up to shape (len+1, 2*len-1).
|
341 |
-
x_flat = x.view([batch, heads, length * 2 * length])
|
342 |
-
x_flat = F.pad(
|
343 |
-
x_flat,
|
344 |
-
# commons.convert_pad_shape([[0, 0], [0, 0], [0, int(length) - 1]])
|
345 |
-
[0, int(length) - 1, 0, 0, 0, 0],
|
346 |
-
)
|
347 |
-
|
348 |
-
# Reshape and slice out the padded elements.
|
349 |
-
x_final = x_flat.view([batch, heads, length + 1, 2 * length - 1])[
|
350 |
-
:, :, :length, length - 1 :
|
351 |
-
]
|
352 |
-
return x_final
|
353 |
-
|
354 |
-
def _absolute_position_to_relative_position(self, x):
|
355 |
-
"""
|
356 |
-
x: [b, h, l, l]
|
357 |
-
ret: [b, h, l, 2*l-1]
|
358 |
-
"""
|
359 |
-
batch, heads, length, _ = x.size()
|
360 |
-
# padd along column
|
361 |
-
x = F.pad(
|
362 |
-
x,
|
363 |
-
# commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, int(length) - 1]])
|
364 |
-
[0, int(length) - 1, 0, 0, 0, 0, 0, 0],
|
365 |
-
)
|
366 |
-
x_flat = x.view([batch, heads, int(length**2) + int(length * (length - 1))])
|
367 |
-
# add 0's in the beginning that will skew the elements after reshape
|
368 |
-
x_flat = F.pad(
|
369 |
-
x_flat,
|
370 |
-
# commons.convert_pad_shape([[0, 0], [0, 0], [int(length), 0]])
|
371 |
-
[length, 0, 0, 0, 0, 0],
|
372 |
-
)
|
373 |
-
x_final = x_flat.view([batch, heads, length, 2 * length])[:, :, :, 1:]
|
374 |
-
return x_final
|
375 |
-
|
376 |
-
def _attention_bias_proximal(self, length: int):
|
377 |
-
"""Bias for self-attention to encourage attention to close positions.
|
378 |
-
Args:
|
379 |
-
length: an integer scalar.
|
380 |
-
Returns:
|
381 |
-
a Tensor with shape [1, 1, length, length]
|
382 |
-
"""
|
383 |
-
r = torch.arange(length, dtype=torch.float32)
|
384 |
-
diff = torch.unsqueeze(r, 0) - torch.unsqueeze(r, 1)
|
385 |
-
return torch.unsqueeze(torch.unsqueeze(-torch.log1p(torch.abs(diff)), 0), 0)
|
386 |
-
|
387 |
-
|
388 |
-
class FFN(nn.Module):
|
389 |
-
def __init__(
|
390 |
-
self,
|
391 |
-
in_channels,
|
392 |
-
out_channels,
|
393 |
-
filter_channels,
|
394 |
-
kernel_size,
|
395 |
-
p_dropout=0.0,
|
396 |
-
activation: str = None,
|
397 |
-
causal=False,
|
398 |
-
):
|
399 |
-
super(FFN, self).__init__()
|
400 |
-
self.in_channels = in_channels
|
401 |
-
self.out_channels = out_channels
|
402 |
-
self.filter_channels = filter_channels
|
403 |
-
self.kernel_size = kernel_size
|
404 |
-
self.p_dropout = p_dropout
|
405 |
-
self.activation = activation
|
406 |
-
self.causal = causal
|
407 |
-
self.is_activation = True if activation == "gelu" else False
|
408 |
-
# if causal:
|
409 |
-
# self.padding = self._causal_padding
|
410 |
-
# else:
|
411 |
-
# self.padding = self._same_padding
|
412 |
-
|
413 |
-
self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size)
|
414 |
-
self.conv_2 = nn.Conv1d(filter_channels, out_channels, kernel_size)
|
415 |
-
self.drop = nn.Dropout(p_dropout)
|
416 |
-
|
417 |
-
def padding(self, x: torch.Tensor, x_mask: torch.Tensor) -> torch.Tensor:
|
418 |
-
if self.causal:
|
419 |
-
padding = self._causal_padding(x * x_mask)
|
420 |
-
else:
|
421 |
-
padding = self._same_padding(x * x_mask)
|
422 |
-
return padding
|
423 |
-
|
424 |
-
def forward(self, x: torch.Tensor, x_mask: torch.Tensor):
|
425 |
-
x = self.conv_1(self.padding(x, x_mask))
|
426 |
-
if self.is_activation:
|
427 |
-
x = x * torch.sigmoid(1.702 * x)
|
428 |
-
else:
|
429 |
-
x = torch.relu(x)
|
430 |
-
x = self.drop(x)
|
431 |
-
|
432 |
-
x = self.conv_2(self.padding(x, x_mask))
|
433 |
-
return x * x_mask
|
434 |
-
|
435 |
-
def _causal_padding(self, x):
|
436 |
-
if self.kernel_size == 1:
|
437 |
-
return x
|
438 |
-
pad_l: int = self.kernel_size - 1
|
439 |
-
pad_r: int = 0
|
440 |
-
# padding = [[0, 0], [0, 0], [pad_l, pad_r]]
|
441 |
-
x = F.pad(
|
442 |
-
x,
|
443 |
-
# commons.convert_pad_shape(padding)
|
444 |
-
[pad_l, pad_r, 0, 0, 0, 0],
|
445 |
-
)
|
446 |
-
return x
|
447 |
-
|
448 |
-
def _same_padding(self, x):
|
449 |
-
if self.kernel_size == 1:
|
450 |
-
return x
|
451 |
-
pad_l: int = (self.kernel_size - 1) // 2
|
452 |
-
pad_r: int = self.kernel_size // 2
|
453 |
-
# padding = [[0, 0], [0, 0], [pad_l, pad_r]]
|
454 |
-
x = F.pad(
|
455 |
-
x,
|
456 |
-
# commons.convert_pad_shape(padding)
|
457 |
-
[pad_l, pad_r, 0, 0, 0, 0],
|
458 |
-
)
|
459 |
-
return x
|
|
|
1 |
+
import copy
|
2 |
+
import math
|
3 |
+
from typing import Optional
|
4 |
+
|
5 |
+
import numpy as np
|
6 |
+
import torch
|
7 |
+
from torch import nn
|
8 |
+
from torch.nn import functional as F
|
9 |
+
|
10 |
+
from libs.infer_packs import commons, modules
|
11 |
+
from libs.infer_packs.modules import LayerNorm
|
12 |
+
|
13 |
+
|
14 |
+
class Encoder(nn.Module):
|
15 |
+
def __init__(
|
16 |
+
self,
|
17 |
+
hidden_channels,
|
18 |
+
filter_channels,
|
19 |
+
n_heads,
|
20 |
+
n_layers,
|
21 |
+
kernel_size=1,
|
22 |
+
p_dropout=0.0,
|
23 |
+
window_size=10,
|
24 |
+
**kwargs
|
25 |
+
):
|
26 |
+
super(Encoder, self).__init__()
|
27 |
+
self.hidden_channels = hidden_channels
|
28 |
+
self.filter_channels = filter_channels
|
29 |
+
self.n_heads = n_heads
|
30 |
+
self.n_layers = int(n_layers)
|
31 |
+
self.kernel_size = kernel_size
|
32 |
+
self.p_dropout = p_dropout
|
33 |
+
self.window_size = window_size
|
34 |
+
|
35 |
+
self.drop = nn.Dropout(p_dropout)
|
36 |
+
self.attn_layers = nn.ModuleList()
|
37 |
+
self.norm_layers_1 = nn.ModuleList()
|
38 |
+
self.ffn_layers = nn.ModuleList()
|
39 |
+
self.norm_layers_2 = nn.ModuleList()
|
40 |
+
for i in range(self.n_layers):
|
41 |
+
self.attn_layers.append(
|
42 |
+
MultiHeadAttention(
|
43 |
+
hidden_channels,
|
44 |
+
hidden_channels,
|
45 |
+
n_heads,
|
46 |
+
p_dropout=p_dropout,
|
47 |
+
window_size=window_size,
|
48 |
+
)
|
49 |
+
)
|
50 |
+
self.norm_layers_1.append(LayerNorm(hidden_channels))
|
51 |
+
self.ffn_layers.append(
|
52 |
+
FFN(
|
53 |
+
hidden_channels,
|
54 |
+
hidden_channels,
|
55 |
+
filter_channels,
|
56 |
+
kernel_size,
|
57 |
+
p_dropout=p_dropout,
|
58 |
+
)
|
59 |
+
)
|
60 |
+
self.norm_layers_2.append(LayerNorm(hidden_channels))
|
61 |
+
|
62 |
+
def forward(self, x, x_mask):
|
63 |
+
attn_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
|
64 |
+
x = x * x_mask
|
65 |
+
zippep = zip(
|
66 |
+
self.attn_layers, self.norm_layers_1, self.ffn_layers, self.norm_layers_2
|
67 |
+
)
|
68 |
+
for attn_layers, norm_layers_1, ffn_layers, norm_layers_2 in zippep:
|
69 |
+
y = attn_layers(x, x, attn_mask)
|
70 |
+
y = self.drop(y)
|
71 |
+
x = norm_layers_1(x + y)
|
72 |
+
|
73 |
+
y = ffn_layers(x, x_mask)
|
74 |
+
y = self.drop(y)
|
75 |
+
x = norm_layers_2(x + y)
|
76 |
+
x = x * x_mask
|
77 |
+
return x
|
78 |
+
|
79 |
+
|
80 |
+
class Decoder(nn.Module):
|
81 |
+
def __init__(
|
82 |
+
self,
|
83 |
+
hidden_channels,
|
84 |
+
filter_channels,
|
85 |
+
n_heads,
|
86 |
+
n_layers,
|
87 |
+
kernel_size=1,
|
88 |
+
p_dropout=0.0,
|
89 |
+
proximal_bias=False,
|
90 |
+
proximal_init=True,
|
91 |
+
**kwargs
|
92 |
+
):
|
93 |
+
super(Decoder, self).__init__()
|
94 |
+
self.hidden_channels = hidden_channels
|
95 |
+
self.filter_channels = filter_channels
|
96 |
+
self.n_heads = n_heads
|
97 |
+
self.n_layers = n_layers
|
98 |
+
self.kernel_size = kernel_size
|
99 |
+
self.p_dropout = p_dropout
|
100 |
+
self.proximal_bias = proximal_bias
|
101 |
+
self.proximal_init = proximal_init
|
102 |
+
|
103 |
+
self.drop = nn.Dropout(p_dropout)
|
104 |
+
self.self_attn_layers = nn.ModuleList()
|
105 |
+
self.norm_layers_0 = nn.ModuleList()
|
106 |
+
self.encdec_attn_layers = nn.ModuleList()
|
107 |
+
self.norm_layers_1 = nn.ModuleList()
|
108 |
+
self.ffn_layers = nn.ModuleList()
|
109 |
+
self.norm_layers_2 = nn.ModuleList()
|
110 |
+
for i in range(self.n_layers):
|
111 |
+
self.self_attn_layers.append(
|
112 |
+
MultiHeadAttention(
|
113 |
+
hidden_channels,
|
114 |
+
hidden_channels,
|
115 |
+
n_heads,
|
116 |
+
p_dropout=p_dropout,
|
117 |
+
proximal_bias=proximal_bias,
|
118 |
+
proximal_init=proximal_init,
|
119 |
+
)
|
120 |
+
)
|
121 |
+
self.norm_layers_0.append(LayerNorm(hidden_channels))
|
122 |
+
self.encdec_attn_layers.append(
|
123 |
+
MultiHeadAttention(
|
124 |
+
hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout
|
125 |
+
)
|
126 |
+
)
|
127 |
+
self.norm_layers_1.append(LayerNorm(hidden_channels))
|
128 |
+
self.ffn_layers.append(
|
129 |
+
FFN(
|
130 |
+
hidden_channels,
|
131 |
+
hidden_channels,
|
132 |
+
filter_channels,
|
133 |
+
kernel_size,
|
134 |
+
p_dropout=p_dropout,
|
135 |
+
causal=True,
|
136 |
+
)
|
137 |
+
)
|
138 |
+
self.norm_layers_2.append(LayerNorm(hidden_channels))
|
139 |
+
|
140 |
+
def forward(self, x, x_mask, h, h_mask):
|
141 |
+
"""
|
142 |
+
x: decoder input
|
143 |
+
h: encoder output
|
144 |
+
"""
|
145 |
+
self_attn_mask = commons.subsequent_mask(x_mask.size(2)).to(
|
146 |
+
device=x.device, dtype=x.dtype
|
147 |
+
)
|
148 |
+
encdec_attn_mask = h_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
|
149 |
+
x = x * x_mask
|
150 |
+
for i in range(self.n_layers):
|
151 |
+
y = self.self_attn_layers[i](x, x, self_attn_mask)
|
152 |
+
y = self.drop(y)
|
153 |
+
x = self.norm_layers_0[i](x + y)
|
154 |
+
|
155 |
+
y = self.encdec_attn_layers[i](x, h, encdec_attn_mask)
|
156 |
+
y = self.drop(y)
|
157 |
+
x = self.norm_layers_1[i](x + y)
|
158 |
+
|
159 |
+
y = self.ffn_layers[i](x, x_mask)
|
160 |
+
y = self.drop(y)
|
161 |
+
x = self.norm_layers_2[i](x + y)
|
162 |
+
x = x * x_mask
|
163 |
+
return x
|
164 |
+
|
165 |
+
|
166 |
+
class MultiHeadAttention(nn.Module):
|
167 |
+
def __init__(
|
168 |
+
self,
|
169 |
+
channels,
|
170 |
+
out_channels,
|
171 |
+
n_heads,
|
172 |
+
p_dropout=0.0,
|
173 |
+
window_size=None,
|
174 |
+
heads_share=True,
|
175 |
+
block_length=None,
|
176 |
+
proximal_bias=False,
|
177 |
+
proximal_init=False,
|
178 |
+
):
|
179 |
+
super(MultiHeadAttention, self).__init__()
|
180 |
+
assert channels % n_heads == 0
|
181 |
+
|
182 |
+
self.channels = channels
|
183 |
+
self.out_channels = out_channels
|
184 |
+
self.n_heads = n_heads
|
185 |
+
self.p_dropout = p_dropout
|
186 |
+
self.window_size = window_size
|
187 |
+
self.heads_share = heads_share
|
188 |
+
self.block_length = block_length
|
189 |
+
self.proximal_bias = proximal_bias
|
190 |
+
self.proximal_init = proximal_init
|
191 |
+
self.attn = None
|
192 |
+
|
193 |
+
self.k_channels = channels // n_heads
|
194 |
+
self.conv_q = nn.Conv1d(channels, channels, 1)
|
195 |
+
self.conv_k = nn.Conv1d(channels, channels, 1)
|
196 |
+
self.conv_v = nn.Conv1d(channels, channels, 1)
|
197 |
+
self.conv_o = nn.Conv1d(channels, out_channels, 1)
|
198 |
+
self.drop = nn.Dropout(p_dropout)
|
199 |
+
|
200 |
+
if window_size is not None:
|
201 |
+
n_heads_rel = 1 if heads_share else n_heads
|
202 |
+
rel_stddev = self.k_channels**-0.5
|
203 |
+
self.emb_rel_k = nn.Parameter(
|
204 |
+
torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels)
|
205 |
+
* rel_stddev
|
206 |
+
)
|
207 |
+
self.emb_rel_v = nn.Parameter(
|
208 |
+
torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels)
|
209 |
+
* rel_stddev
|
210 |
+
)
|
211 |
+
|
212 |
+
nn.init.xavier_uniform_(self.conv_q.weight)
|
213 |
+
nn.init.xavier_uniform_(self.conv_k.weight)
|
214 |
+
nn.init.xavier_uniform_(self.conv_v.weight)
|
215 |
+
if proximal_init:
|
216 |
+
with torch.no_grad():
|
217 |
+
self.conv_k.weight.copy_(self.conv_q.weight)
|
218 |
+
self.conv_k.bias.copy_(self.conv_q.bias)
|
219 |
+
|
220 |
+
def forward(
|
221 |
+
self, x: torch.Tensor, c: torch.Tensor, attn_mask: Optional[torch.Tensor] = None
|
222 |
+
):
|
223 |
+
q = self.conv_q(x)
|
224 |
+
k = self.conv_k(c)
|
225 |
+
v = self.conv_v(c)
|
226 |
+
|
227 |
+
x, _ = self.attention(q, k, v, mask=attn_mask)
|
228 |
+
|
229 |
+
x = self.conv_o(x)
|
230 |
+
return x
|
231 |
+
|
232 |
+
def attention(
|
233 |
+
self,
|
234 |
+
query: torch.Tensor,
|
235 |
+
key: torch.Tensor,
|
236 |
+
value: torch.Tensor,
|
237 |
+
mask: Optional[torch.Tensor] = None,
|
238 |
+
):
|
239 |
+
# reshape [b, d, t] -> [b, n_h, t, d_k]
|
240 |
+
b, d, t_s = key.size()
|
241 |
+
t_t = query.size(2)
|
242 |
+
query = query.view(b, self.n_heads, self.k_channels, t_t).transpose(2, 3)
|
243 |
+
key = key.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
|
244 |
+
value = value.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
|
245 |
+
|
246 |
+
scores = torch.matmul(query / math.sqrt(self.k_channels), key.transpose(-2, -1))
|
247 |
+
if self.window_size is not None:
|
248 |
+
assert (
|
249 |
+
t_s == t_t
|
250 |
+
), "Relative attention is only available for self-attention."
|
251 |
+
key_relative_embeddings = self._get_relative_embeddings(self.emb_rel_k, t_s)
|
252 |
+
rel_logits = self._matmul_with_relative_keys(
|
253 |
+
query / math.sqrt(self.k_channels), key_relative_embeddings
|
254 |
+
)
|
255 |
+
scores_local = self._relative_position_to_absolute_position(rel_logits)
|
256 |
+
scores = scores + scores_local
|
257 |
+
if self.proximal_bias:
|
258 |
+
assert t_s == t_t, "Proximal bias is only available for self-attention."
|
259 |
+
scores = scores + self._attention_bias_proximal(t_s).to(
|
260 |
+
device=scores.device, dtype=scores.dtype
|
261 |
+
)
|
262 |
+
if mask is not None:
|
263 |
+
scores = scores.masked_fill(mask == 0, -1e4)
|
264 |
+
if self.block_length is not None:
|
265 |
+
assert (
|
266 |
+
t_s == t_t
|
267 |
+
), "Local attention is only available for self-attention."
|
268 |
+
block_mask = (
|
269 |
+
torch.ones_like(scores)
|
270 |
+
.triu(-self.block_length)
|
271 |
+
.tril(self.block_length)
|
272 |
+
)
|
273 |
+
scores = scores.masked_fill(block_mask == 0, -1e4)
|
274 |
+
p_attn = F.softmax(scores, dim=-1) # [b, n_h, t_t, t_s]
|
275 |
+
p_attn = self.drop(p_attn)
|
276 |
+
output = torch.matmul(p_attn, value)
|
277 |
+
if self.window_size is not None:
|
278 |
+
relative_weights = self._absolute_position_to_relative_position(p_attn)
|
279 |
+
value_relative_embeddings = self._get_relative_embeddings(
|
280 |
+
self.emb_rel_v, t_s
|
281 |
+
)
|
282 |
+
output = output + self._matmul_with_relative_values(
|
283 |
+
relative_weights, value_relative_embeddings
|
284 |
+
)
|
285 |
+
output = (
|
286 |
+
output.transpose(2, 3).contiguous().view(b, d, t_t)
|
287 |
+
) # [b, n_h, t_t, d_k] -> [b, d, t_t]
|
288 |
+
return output, p_attn
|
289 |
+
|
290 |
+
def _matmul_with_relative_values(self, x, y):
|
291 |
+
"""
|
292 |
+
x: [b, h, l, m]
|
293 |
+
y: [h or 1, m, d]
|
294 |
+
ret: [b, h, l, d]
|
295 |
+
"""
|
296 |
+
ret = torch.matmul(x, y.unsqueeze(0))
|
297 |
+
return ret
|
298 |
+
|
299 |
+
def _matmul_with_relative_keys(self, x, y):
|
300 |
+
"""
|
301 |
+
x: [b, h, l, d]
|
302 |
+
y: [h or 1, m, d]
|
303 |
+
ret: [b, h, l, m]
|
304 |
+
"""
|
305 |
+
ret = torch.matmul(x, y.unsqueeze(0).transpose(-2, -1))
|
306 |
+
return ret
|
307 |
+
|
308 |
+
def _get_relative_embeddings(self, relative_embeddings, length: int):
|
309 |
+
max_relative_position = 2 * self.window_size + 1
|
310 |
+
# Pad first before slice to avoid using cond ops.
|
311 |
+
pad_length: int = max(length - (self.window_size + 1), 0)
|
312 |
+
slice_start_position = max((self.window_size + 1) - length, 0)
|
313 |
+
slice_end_position = slice_start_position + 2 * length - 1
|
314 |
+
if pad_length > 0:
|
315 |
+
padded_relative_embeddings = F.pad(
|
316 |
+
relative_embeddings,
|
317 |
+
# commons.convert_pad_shape([[0, 0], [pad_length, pad_length], [0, 0]]),
|
318 |
+
[0, 0, pad_length, pad_length, 0, 0],
|
319 |
+
)
|
320 |
+
else:
|
321 |
+
padded_relative_embeddings = relative_embeddings
|
322 |
+
used_relative_embeddings = padded_relative_embeddings[
|
323 |
+
:, slice_start_position:slice_end_position
|
324 |
+
]
|
325 |
+
return used_relative_embeddings
|
326 |
+
|
327 |
+
def _relative_position_to_absolute_position(self, x):
|
328 |
+
"""
|
329 |
+
x: [b, h, l, 2*l-1]
|
330 |
+
ret: [b, h, l, l]
|
331 |
+
"""
|
332 |
+
batch, heads, length, _ = x.size()
|
333 |
+
# Concat columns of pad to shift from relative to absolute indexing.
|
334 |
+
x = F.pad(
|
335 |
+
x,
|
336 |
+
# commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, 1]])
|
337 |
+
[0, 1, 0, 0, 0, 0, 0, 0],
|
338 |
+
)
|
339 |
+
|
340 |
+
# Concat extra elements so to add up to shape (len+1, 2*len-1).
|
341 |
+
x_flat = x.view([batch, heads, length * 2 * length])
|
342 |
+
x_flat = F.pad(
|
343 |
+
x_flat,
|
344 |
+
# commons.convert_pad_shape([[0, 0], [0, 0], [0, int(length) - 1]])
|
345 |
+
[0, int(length) - 1, 0, 0, 0, 0],
|
346 |
+
)
|
347 |
+
|
348 |
+
# Reshape and slice out the padded elements.
|
349 |
+
x_final = x_flat.view([batch, heads, length + 1, 2 * length - 1])[
|
350 |
+
:, :, :length, length - 1 :
|
351 |
+
]
|
352 |
+
return x_final
|
353 |
+
|
354 |
+
def _absolute_position_to_relative_position(self, x):
|
355 |
+
"""
|
356 |
+
x: [b, h, l, l]
|
357 |
+
ret: [b, h, l, 2*l-1]
|
358 |
+
"""
|
359 |
+
batch, heads, length, _ = x.size()
|
360 |
+
# padd along column
|
361 |
+
x = F.pad(
|
362 |
+
x,
|
363 |
+
# commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, int(length) - 1]])
|
364 |
+
[0, int(length) - 1, 0, 0, 0, 0, 0, 0],
|
365 |
+
)
|
366 |
+
x_flat = x.view([batch, heads, int(length**2) + int(length * (length - 1))])
|
367 |
+
# add 0's in the beginning that will skew the elements after reshape
|
368 |
+
x_flat = F.pad(
|
369 |
+
x_flat,
|
370 |
+
# commons.convert_pad_shape([[0, 0], [0, 0], [int(length), 0]])
|
371 |
+
[length, 0, 0, 0, 0, 0],
|
372 |
+
)
|
373 |
+
x_final = x_flat.view([batch, heads, length, 2 * length])[:, :, :, 1:]
|
374 |
+
return x_final
|
375 |
+
|
376 |
+
def _attention_bias_proximal(self, length: int):
|
377 |
+
"""Bias for self-attention to encourage attention to close positions.
|
378 |
+
Args:
|
379 |
+
length: an integer scalar.
|
380 |
+
Returns:
|
381 |
+
a Tensor with shape [1, 1, length, length]
|
382 |
+
"""
|
383 |
+
r = torch.arange(length, dtype=torch.float32)
|
384 |
+
diff = torch.unsqueeze(r, 0) - torch.unsqueeze(r, 1)
|
385 |
+
return torch.unsqueeze(torch.unsqueeze(-torch.log1p(torch.abs(diff)), 0), 0)
|
386 |
+
|
387 |
+
|
388 |
+
class FFN(nn.Module):
|
389 |
+
def __init__(
|
390 |
+
self,
|
391 |
+
in_channels,
|
392 |
+
out_channels,
|
393 |
+
filter_channels,
|
394 |
+
kernel_size,
|
395 |
+
p_dropout=0.0,
|
396 |
+
activation: str = None,
|
397 |
+
causal=False,
|
398 |
+
):
|
399 |
+
super(FFN, self).__init__()
|
400 |
+
self.in_channels = in_channels
|
401 |
+
self.out_channels = out_channels
|
402 |
+
self.filter_channels = filter_channels
|
403 |
+
self.kernel_size = kernel_size
|
404 |
+
self.p_dropout = p_dropout
|
405 |
+
self.activation = activation
|
406 |
+
self.causal = causal
|
407 |
+
self.is_activation = True if activation == "gelu" else False
|
408 |
+
# if causal:
|
409 |
+
# self.padding = self._causal_padding
|
410 |
+
# else:
|
411 |
+
# self.padding = self._same_padding
|
412 |
+
|
413 |
+
self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size)
|
414 |
+
self.conv_2 = nn.Conv1d(filter_channels, out_channels, kernel_size)
|
415 |
+
self.drop = nn.Dropout(p_dropout)
|
416 |
+
|
417 |
+
def padding(self, x: torch.Tensor, x_mask: torch.Tensor) -> torch.Tensor:
|
418 |
+
if self.causal:
|
419 |
+
padding = self._causal_padding(x * x_mask)
|
420 |
+
else:
|
421 |
+
padding = self._same_padding(x * x_mask)
|
422 |
+
return padding
|
423 |
+
|
424 |
+
def forward(self, x: torch.Tensor, x_mask: torch.Tensor):
|
425 |
+
x = self.conv_1(self.padding(x, x_mask))
|
426 |
+
if self.is_activation:
|
427 |
+
x = x * torch.sigmoid(1.702 * x)
|
428 |
+
else:
|
429 |
+
x = torch.relu(x)
|
430 |
+
x = self.drop(x)
|
431 |
+
|
432 |
+
x = self.conv_2(self.padding(x, x_mask))
|
433 |
+
return x * x_mask
|
434 |
+
|
435 |
+
def _causal_padding(self, x):
|
436 |
+
if self.kernel_size == 1:
|
437 |
+
return x
|
438 |
+
pad_l: int = self.kernel_size - 1
|
439 |
+
pad_r: int = 0
|
440 |
+
# padding = [[0, 0], [0, 0], [pad_l, pad_r]]
|
441 |
+
x = F.pad(
|
442 |
+
x,
|
443 |
+
# commons.convert_pad_shape(padding)
|
444 |
+
[pad_l, pad_r, 0, 0, 0, 0],
|
445 |
+
)
|
446 |
+
return x
|
447 |
+
|
448 |
+
def _same_padding(self, x):
|
449 |
+
if self.kernel_size == 1:
|
450 |
+
return x
|
451 |
+
pad_l: int = (self.kernel_size - 1) // 2
|
452 |
+
pad_r: int = self.kernel_size // 2
|
453 |
+
# padding = [[0, 0], [0, 0], [pad_l, pad_r]]
|
454 |
+
x = F.pad(
|
455 |
+
x,
|
456 |
+
# commons.convert_pad_shape(padding)
|
457 |
+
[pad_l, pad_r, 0, 0, 0, 0],
|
458 |
+
)
|
459 |
+
return x
|
libs/infer_packs/models.py
CHANGED
@@ -10,8 +10,8 @@ from torch import nn
|
|
10 |
from torch.nn import AvgPool1d, Conv1d, Conv2d, ConvTranspose1d
|
11 |
from torch.nn import functional as F
|
12 |
from torch.nn.utils import remove_weight_norm, spectral_norm, weight_norm
|
13 |
-
from libs.
|
14 |
-
from libs.
|
15 |
|
16 |
has_xpu = bool(hasattr(torch, "xpu") and torch.xpu.is_available())
|
17 |
|
|
|
10 |
from torch.nn import AvgPool1d, Conv1d, Conv2d, ConvTranspose1d
|
11 |
from torch.nn import functional as F
|
12 |
from torch.nn.utils import remove_weight_norm, spectral_norm, weight_norm
|
13 |
+
from libs.infer_packs import attentions, commons, modules
|
14 |
+
from libs.infer_packs.commons import get_padding, init_weights
|
15 |
|
16 |
has_xpu = bool(hasattr(torch, "xpu") and torch.xpu.is_available())
|
17 |
|
libs/infer_packs/modules.py
CHANGED
@@ -10,9 +10,9 @@ from torch.nn import AvgPool1d, Conv1d, Conv2d, ConvTranspose1d
|
|
10 |
from torch.nn import functional as F
|
11 |
from torch.nn.utils import remove_weight_norm, weight_norm
|
12 |
|
13 |
-
from libs.
|
14 |
-
from libs.
|
15 |
-
from libs.
|
16 |
|
17 |
LRELU_SLOPE = 0.1
|
18 |
|
|
|
10 |
from torch.nn import functional as F
|
11 |
from torch.nn.utils import remove_weight_norm, weight_norm
|
12 |
|
13 |
+
from libs.infer_packs import commons
|
14 |
+
from libs.infer_packs.commons import get_padding, init_weights
|
15 |
+
from libs.infer_packs.transforms import piecewise_rational_quadratic_transform
|
16 |
|
17 |
LRELU_SLOPE = 0.1
|
18 |
|