File size: 11,058 Bytes
fa19523
 
 
 
373d8e0
fa19523
005f7bb
fa19523
373d8e0
ba2f501
fa19523
 
 
 
 
c1e180a
fa19523
69dbad3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fa19523
69dbad3
 
fa19523
50a6090
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
373d8e0
2e1efa3
fa19523
 
 
 
 
 
cc07737
2e1efa3
fa19523
 
ce3e13a
fa19523
 
 
 
ba2f501
fa19523
69dbad3
 
 
fa19523
 
 
 
 
56c7591
69dbad3
069a909
ba2f501
69dbad3
ba2f501
69dbad3
ba2f501
69dbad3
ba2f501
f9e1c39
 
ba2f501
101a629
69dbad3
373d8e0
fa19523
 
ba2f501
fa19523
 
ba2f501
 
fa19523
 
69dbad3
 
f9e1c39
 
fa19523
 
 
 
 
 
69dbad3
 
fa19523
 
 
69dbad3
fa19523
 
 
 
 
 
69dbad3
ba2f501
fa19523
ba2f501
 
fa19523
ba2f501
 
 
 
a39709a
ba2f501
 
 
 
 
 
 
ce3e13a
ba2f501
 
 
 
 
fa19523
 
ba2f501
fa19523
 
 
 
ba2f501
 
 
 
fa19523
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
50a6090
ba2f501
fa19523
 
 
 
 
ba2f501
 
 
 
 
fee3b02
3c78c06
 
fee3b02
 
c27a6b3
fee3b02
 
 
a75d66e
fee3b02
c236c1c
c27a6b3
fee3b02
fa19523
 
 
ba2f501
fa19523
f738a77
69dbad3
fa19523
ba2f501
 
 
 
 
fa19523
 
 
 
 
 
 
 
 
 
99a73f4
fa19523
 
 
 
 
 
 
 
 
 
 
 
ba2f501
fa19523
 
 
 
 
 
 
99a73f4
 
 
 
 
 
f738a77
99a73f4
 
 
 
 
 
fa19523
ba2f501
fa19523
 
ce3e13a
fa19523
 
 
 
 
 
 
ba2f501
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
import io
import os
import shutil
import uuid
import torch
import random
import spaces
import gradio as gr
import numpy as np

from PIL import Image, ImageCms
import torch
from diffusers import FluxTransformer2DModel
from diffusers.utils import load_image
from pipeline_flux_control_removal import FluxControlRemovalPipeline
pipe = None
torch.set_grad_enabled(False)

image_examples = [
    [
        "example/image/3c43156c-2b44-4ebf-9c47-7707ec60b166.png",
        "example/mask/3c43156c-2b44-4ebf-9c47-7707ec60b166.png"
    ],
    [
        "example/image/0e5124d8-fe43-4b5c-819f-7212f23a6d2a.png",
        "example/mask/0e5124d8-fe43-4b5c-819f-7212f23a6d2a.png"
    ],
    [
        "example/image/0f900fe8-6eab-4f85-8121-29cac9509b94.png",
        "example/mask/0f900fe8-6eab-4f85-8121-29cac9509b94.png"
    ],
    [
        "example/image/3ed1ee18-33b0-4964-b679-0e214a0d8848.png",
        "example/mask/3ed1ee18-33b0-4964-b679-0e214a0d8848.png"
    ],
    [
        "example/image/87cdf3e2-0fa1-4d80-a228-cbb4aba3f44f.png",
        "example/mask/87cdf3e2-0fa1-4d80-a228-cbb4aba3f44f.png"
    ],
    [
        "example/image/55dd199b-d99b-47a2-a691-edfd92233a6b.png",
        "example/mask/55dd199b-d99b-47a2-a691-edfd92233a6b.png"
    ]
    
]


base_model_path = 'black-forest-labs/FLUX.1-dev'
lora_path = 'theSure/Omnieraser'  
transformer = FluxTransformer2DModel.from_pretrained(base_model_path, subfolder='transformer', torch_dtype=torch.bfloat16)
gr.Info(str(f"Model loading: {int((40 / 100) * 100)}%"))
with torch.no_grad():
    initial_input_channels = transformer.config.in_channels
    new_linear = torch.nn.Linear(
        transformer.x_embedder.in_features*4,
        transformer.x_embedder.out_features,
        bias=transformer.x_embedder.bias is not None,
        dtype=transformer.dtype,
        device=transformer.device,
    )
    new_linear.weight.zero_()
    new_linear.weight[:, :initial_input_channels].copy_(transformer.x_embedder.weight)
    if transformer.x_embedder.bias is not None:
        new_linear.bias.copy_(transformer.x_embedder.bias)
    transformer.x_embedder = new_linear
    transformer.register_to_config(in_channels=initial_input_channels*4)
pipe = FluxControlRemovalPipeline.from_pretrained(
    base_model_path,
    transformer=transformer,
    torch_dtype=torch.bfloat16
).to("cuda")
pipe.transformer.to(torch.bfloat16)
gr.Info(str(f"Model loading: {int((80 / 100) * 100)}%"))
gr.Info(str(f"Inject LoRA: {lora_path}"))
pipe.load_lora_weights(lora_path, weight_name="pytorch_lora_weights.safetensors")
gr.Info(str(f"Model loading: {int((100 / 100) * 100)}%"))

@spaces.GPU
def set_seed(seed):
    torch.manual_seed(seed)
    torch.cuda.manual_seed(seed)
    torch.cuda.manual_seed_all(seed)
    np.random.seed(seed)
    random.seed(seed)

@spaces.GPU 
def predict(
    input_image,
    uploaded_mask,
    prompt,
    ddim_steps,
    seed,
    scale,

):
    gr.Info(str(f"Set seed = {seed}"))  
    size1, size2 = input_image.convert("RGB").size
    icc_profile = input_image.info.get('icc_profile')
    if icc_profile:
        gr.Info(str(f"Image detected to contain ICC profile, converting color space to sRGB..."))
        srgb_profile = ImageCms.createProfile("sRGB")
        io_handle = io.BytesIO(icc_profile)   
        src_profile = ImageCms.ImageCmsProfile(io_handle)  
        input_image = ImageCms.profileToProfile(input_image, src_profile, srgb_profile)
        input_image.info.pop('icc_profile', None)

    if size1 < size2:
        input_image = input_image.convert("RGB").resize((1024, int(size2 / size1 * 1024)))
    else:
        input_image = input_image.convert("RGB").resize((int(size1 / size2 * 1024), 1024))

    img = np.array(input_image.convert("RGB"))

    W = int(np.shape(img)[1] - np.shape(img)[1] % 16)
    H = int(np.shape(img)[0] - np.shape(img)[0] % 16)

    input_image = input_image.resize((H, W))
    uploaded_mask = uploaded_mask.resize((H, W))

    if seed == -1:
        seed = random.randint(1, 2147483647)
        set_seed(random.randint(1, 2147483647))
    else:
        set_seed(seed)
    base_model_path = 'black-forest-labs/FLUX.1-dev'
    lora_path = 'theSure/Omnieraser'
    result = pipe(
        prompt=prompt,
        control_image=input_image.convert("RGB"),
        control_mask=uploaded_mask.convert("RGB"),
        width=W,
        height=H,
        num_inference_steps=ddim_steps,
        generator=torch.Generator("cuda").manual_seed(seed),
        guidance_scale=scale,
        max_sequence_length=512,
    ).images[0]

    mask_np = np.array(uploaded_mask.convert("RGB"))
    red = np.array(input_image).astype("float") * 1
    red[:, :, 0] = 180.0
    red[:, :, 2] = 0
    red[:, :, 1] = 0
    result_m = np.array(input_image)
    result_m = Image.fromarray(
        (
            result_m.astype("float") * (1 - mask_np.astype("float") / 512.0) + mask_np.astype("float") / 512.0 * red
        ).astype("uint8")
    )

    dict_res = [input_image, uploaded_mask, result_m, result]

    dict_out = [result]
    image_path = None
    mask_path = None
    return dict_out, dict_res
   

def infer(
    input_image,
    uploaded_mask,
    ddim_steps,
    seed,
    scale,
    removal_prompt,

):
    return predict(input_image, 
                   uploaded_mask,
                   removal_prompt, 
                   ddim_steps, 
                   seed,
                   scale,
    )

def process_example(image_paths, mask_paths):
    global image_path, mask_path
    image = Image.open(image_paths).convert("RGB")
    mask = Image.open(mask_paths).convert("L") 
    black_background = Image.new("RGB", image.size, (0, 0, 0))
    masked_image = Image.composite(black_background, image, mask)
    
    image_path = image_paths
    mask_path = mask_paths
    return masked_image
custom_css = """

.contain { max-width: 1200px !important; }

.custom-image {
    border: 2px dashed #7e22ce !important;
    border-radius: 12px !important;
    transition: all 0.3s ease !important;
}
.custom-image:hover {
    border-color: #9333ea !important;
    box-shadow: 0 4px 15px rgba(158, 109, 202, 0.2) !important;
}

.btn-primary {
    background: linear-gradient(45deg, #7e22ce, #9333ea) !important;
    border: none !important;
    color: white !important;
    border-radius: 8px !important;
}
#inline-examples {
    border: 1px solid #e2e8f0 !important;
    border-radius: 12px !important;
    padding: 16px !important;
    margin-top: 8px !important;
}

#inline-examples .thumbnail {
    border-radius: 8px !important;
    transition: transform 0.2s ease !important;
}

#inline-examples .thumbnail:hover {
    transform: scale(1.05);
    box-shadow: 0 4px 6px -1px rgba(0, 0, 0, 0.1);
}

.example-title h3 {
    margin: 0 0 12px 0 !important;
    color: #475569 !important;
    font-size: 1.1em !important;
    display: flex !important;
    align-items: center !important;
}

.example-title h3::before {
    content: "📚";
    margin-right: 8px;
    font-size: 1.2em;
}

.row { align-items: stretch !important; }

.panel { height: 100%; }
"""

with gr.Blocks(
    css=custom_css,
    theme=gr.themes.Soft(
        primary_hue="purple",
        secondary_hue="purple",
        font=[gr.themes.GoogleFont('Inter'), 'sans-serif']
    ),
    title="Omnieraser"
) as demo:


    ddim_steps = gr.Slider(visible=False, value=28)
    scale = gr.Slider(visible=False, value=3.5)
    seed = gr.Slider(visible=False, value=-1)
    removal_prompt = gr.Textbox(visible=False, value="There is nothing here.")

    gr.Markdown("""
    <div align="center">
        <h1 style="font-size: 2.5em; margin-bottom: 0.5em;">🪄 Omnieraser</h1>
    </div>
    """)
    gr.Markdown("""
            This is the demo of the paper "OmniEraser: Remove Objects and Their Effects in Images with Paired Video-Frame Data".
            
            To use this application:
            1. Upload an image. 
            2. Upload a pre-defined mask (Unfortunatey, you cannot sketch mask here due to the compatibility issues with zerogpu, if you need draw mask manually, please use our offline gradio script available in our GitHub repository).
            3. Set the seed (default is 1234).
            4. Click 'Start Processing' to process the image.
            5. The result will be displayed.
            
            Note: The mask should be a binary image where the object to be removed is white and the background is black.

            More details can be found at our [GitHub Repository](https://github.com/PRIS-CV/Omnieraser).
    """)
    with gr.Row(equal_height=False):
        with gr.Column(scale=1, variant="panel"):
            gr.Markdown("## 📥 Input Panel")
            
            with gr.Group():
                input_image = gr.Image(label="Upload Image", type="pil", image_mode="RGB")
                uploaded_mask = gr.Image(label="Upload Mask", type="pil", image_mode="L") 
            with gr.Row(variant="compact"):
                run_button = gr.Button(
                    "🚀 Start Processing",
                    variant="primary",
                    size="lg"
                )
            with gr.Group():
                gr.Markdown("### ⚙️ Control Parameters")
                seed = gr.Slider(
                    label="Random Seed",
                    minimum=-1,
                    maximum=2147483647,
                    value=1234,
                    step=1,
                    info="-1 for random generation"
                )


        with gr.Column(scale=1, variant="panel"):
            gr.Markdown("## 📤 Output Panel")
            with gr.Tabs():
                with gr.Tab("Final Result"):
                    inpaint_result = gr.Gallery(
                        label="Generated Image",
                        columns=2,
                        height=450,
                        preview=True,
                        object_fit="contain"
                    )

                with gr.Tab("Visualization Steps"):
                    gallery = gr.Gallery(
                        label="Workflow Steps",
                        columns=2,
                        height=450,
                        object_fit="contain"
                    )
        with gr.Column(scale=1, variant="panel"):      
            with gr.Column(variant="panel"):
                gr.Markdown("### 🖼️ Example Gallery", elem_classes=["example-title"])
                example = gr.Examples(
                    examples=image_examples,
                    inputs=[
                        input_image, uploaded_mask
                    ],
                    outputs=[inpaint_result, gallery],
                    examples_per_page=10,
                    label="Click any example to load",
                    elem_id="inline-examples"
                )
    run_button.click(
        fn=infer,
        inputs=[
            input_image,
            uploaded_mask,
            ddim_steps,
            seed,
            scale,
            removal_prompt,
        ],
        outputs=[inpaint_result, gallery]
    )
    
demo.launch()