File size: 11,272 Bytes
a49cc2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
<!-- Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
-->

# Mochi 1 Preview

> [!TIP]
> Only a research preview of the model weights is available at the moment.

[Mochi 1](https://huggingface.co/genmo/mochi-1-preview) is a video generation model by Genmo with a strong focus on prompt adherence and motion quality. The model features a 10B parameter Asmmetric Diffusion Transformer (AsymmDiT) architecture, and uses non-square QKV and output projection layers to reduce inference memory requirements. A single T5-XXL model is used to encode prompts.

*Mochi 1 preview is an open state-of-the-art video generation model with high-fidelity motion and strong prompt adherence in preliminary evaluation. This model dramatically closes the gap between closed and open video generation systems. The model is released under a permissive Apache 2.0 license.*

> [!TIP]
> Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.

## Quantization

Quantization helps reduce the memory requirements of very large models by storing model weights in a lower precision data type. However, quantization may have varying impact on video quality depending on the video model.

Refer to the [Quantization](../../quantization/overview) overview to learn more about supported quantization backends and selecting a quantization backend that supports your use case. The example below demonstrates how to load a quantized [`MochiPipeline`] for inference with bitsandbytes.

```py
import torch
from diffusers import BitsAndBytesConfig as DiffusersBitsAndBytesConfig, MochiTransformer3DModel, MochiPipeline
from diffusers.utils import export_to_video
from transformers import BitsAndBytesConfig as BitsAndBytesConfig, T5EncoderModel

quant_config = BitsAndBytesConfig(load_in_8bit=True)
text_encoder_8bit = T5EncoderModel.from_pretrained(
    "genmo/mochi-1-preview",
    subfolder="text_encoder",
    quantization_config=quant_config,
    torch_dtype=torch.float16,
)

quant_config = DiffusersBitsAndBytesConfig(load_in_8bit=True)
transformer_8bit = MochiTransformer3DModel.from_pretrained(
    "genmo/mochi-1-preview",
    subfolder="transformer",
    quantization_config=quant_config,
    torch_dtype=torch.float16,
)

pipeline = MochiPipeline.from_pretrained(
    "genmo/mochi-1-preview",
    text_encoder=text_encoder_8bit,
    transformer=transformer_8bit,
    torch_dtype=torch.float16,
    device_map="balanced",
)

video = pipeline(
  "Close-up of a cats eye, with the galaxy reflected in the cats eye. Ultra high resolution 4k.",
  num_inference_steps=28,
  guidance_scale=3.5
).frames[0]
export_to_video(video, "cat.mp4")
```

## Generating videos with Mochi-1 Preview

The following example will download the full precision `mochi-1-preview` weights and produce the highest quality results but will require at least 42GB VRAM to run.

```python
import torch
from diffusers import MochiPipeline
from diffusers.utils import export_to_video

pipe = MochiPipeline.from_pretrained("genmo/mochi-1-preview")

# Enable memory savings
pipe.enable_model_cpu_offload()
pipe.enable_vae_tiling()

prompt = "Close-up of a chameleon's eye, with its scaly skin changing color. Ultra high resolution 4k."

with torch.autocast("cuda", torch.bfloat16, cache_enabled=False):
      frames = pipe(prompt, num_frames=85).frames[0]

export_to_video(frames, "mochi.mp4", fps=30)
```

## Using a lower precision variant to save memory

The following example will use the `bfloat16` variant of the model and requires 22GB VRAM to run. There is a slight drop in the quality of the generated video as a result.

```python
import torch
from diffusers import MochiPipeline
from diffusers.utils import export_to_video

pipe = MochiPipeline.from_pretrained("genmo/mochi-1-preview", variant="bf16", torch_dtype=torch.bfloat16)

# Enable memory savings
pipe.enable_model_cpu_offload()
pipe.enable_vae_tiling()

prompt = "Close-up of a chameleon's eye, with its scaly skin changing color. Ultra high resolution 4k."
frames = pipe(prompt, num_frames=85).frames[0]

export_to_video(frames, "mochi.mp4", fps=30)
```

## Reproducing the results from the Genmo Mochi repo

The [Genmo Mochi implementation](https://github.com/genmoai/mochi/tree/main) uses different precision values for each stage in the inference process. The text encoder and VAE use `torch.float32`, while the DiT uses `torch.bfloat16` with the [attention kernel](https://pytorch.org/docs/stable/generated/torch.nn.attention.sdpa_kernel.html#torch.nn.attention.sdpa_kernel) set to `EFFICIENT_ATTENTION`. Diffusers pipelines currently do not support setting different `dtypes` for different stages of the pipeline. In order to run inference in the same way as the original implementation, please refer to the following example.

<Tip>
The original Mochi implementation zeros out empty prompts. However, enabling this option and placing the entire pipeline under autocast can lead to numerical overflows with the T5 text encoder.

When enabling `force_zeros_for_empty_prompt`, it is recommended to run the text encoding step outside the autocast context in full precision.
</Tip>

<Tip>
Decoding the latents in full precision is very memory intensive. You will need at least 70GB VRAM to generate the 163 frames in this example. To reduce memory, either reduce the number of frames or run the decoding step in `torch.bfloat16`.
</Tip>

```python
import torch
from torch.nn.attention import SDPBackend, sdpa_kernel

from diffusers import MochiPipeline
from diffusers.utils import export_to_video
from diffusers.video_processor import VideoProcessor

pipe = MochiPipeline.from_pretrained("genmo/mochi-1-preview", force_zeros_for_empty_prompt=True)
pipe.enable_vae_tiling()
pipe.enable_model_cpu_offload()

prompt =  "An aerial shot of a parade of elephants walking across the African savannah. The camera showcases the herd and the surrounding landscape."

with torch.no_grad():
    prompt_embeds, prompt_attention_mask, negative_prompt_embeds, negative_prompt_attention_mask = (
        pipe.encode_prompt(prompt=prompt)
    )

with torch.autocast("cuda", torch.bfloat16):
    with sdpa_kernel(SDPBackend.EFFICIENT_ATTENTION):
        frames = pipe(
            prompt_embeds=prompt_embeds,
            prompt_attention_mask=prompt_attention_mask,
            negative_prompt_embeds=negative_prompt_embeds,
            negative_prompt_attention_mask=negative_prompt_attention_mask,
            guidance_scale=4.5,
            num_inference_steps=64,
            height=480,
            width=848,
            num_frames=163,
            generator=torch.Generator("cuda").manual_seed(0),
            output_type="latent",
            return_dict=False,
        )[0]

video_processor = VideoProcessor(vae_scale_factor=8)
has_latents_mean = hasattr(pipe.vae.config, "latents_mean") and pipe.vae.config.latents_mean is not None
has_latents_std = hasattr(pipe.vae.config, "latents_std") and pipe.vae.config.latents_std is not None
if has_latents_mean and has_latents_std:
    latents_mean = (
        torch.tensor(pipe.vae.config.latents_mean).view(1, 12, 1, 1, 1).to(frames.device, frames.dtype)
    )
    latents_std = (
        torch.tensor(pipe.vae.config.latents_std).view(1, 12, 1, 1, 1).to(frames.device, frames.dtype)
    )
    frames = frames * latents_std / pipe.vae.config.scaling_factor + latents_mean
else:
    frames = frames / pipe.vae.config.scaling_factor

with torch.no_grad():
    video = pipe.vae.decode(frames.to(pipe.vae.dtype), return_dict=False)[0]

video = video_processor.postprocess_video(video)[0]
export_to_video(video, "mochi.mp4", fps=30)
```

## Running inference with multiple GPUs

It is possible to split the large Mochi transformer across multiple GPUs using the `device_map` and `max_memory` options in `from_pretrained`. In the following example we split the model across two GPUs, each with 24GB of VRAM.

```python
import torch
from diffusers import MochiPipeline, MochiTransformer3DModel
from diffusers.utils import export_to_video

model_id = "genmo/mochi-1-preview"
transformer = MochiTransformer3DModel.from_pretrained(
    model_id,
    subfolder="transformer",
    device_map="auto",
    max_memory={0: "24GB", 1: "24GB"}
)

pipe = MochiPipeline.from_pretrained(model_id,  transformer=transformer)
pipe.enable_model_cpu_offload()
pipe.enable_vae_tiling()

with torch.autocast(device_type="cuda", dtype=torch.bfloat16, cache_enabled=False):
    frames = pipe(
        prompt="Close-up of a chameleon's eye, with its scaly skin changing color. Ultra high resolution 4k.",
        negative_prompt="",
        height=480,
        width=848,
        num_frames=85,
        num_inference_steps=50,
        guidance_scale=4.5,
        num_videos_per_prompt=1,
        generator=torch.Generator(device="cuda").manual_seed(0),
        max_sequence_length=256,
        output_type="pil",
    ).frames[0]

export_to_video(frames, "output.mp4", fps=30)
```

## Using single file loading with the Mochi Transformer

You can use `from_single_file` to load the Mochi transformer in its original format.

<Tip>
Diffusers currently doesn't support using the FP8 scaled versions of the Mochi single file checkpoints.
</Tip>

```python
import torch
from diffusers import MochiPipeline, MochiTransformer3DModel
from diffusers.utils import export_to_video

model_id = "genmo/mochi-1-preview"

ckpt_path = "https://huggingface.co/Comfy-Org/mochi_preview_repackaged/blob/main/split_files/diffusion_models/mochi_preview_bf16.safetensors"

transformer = MochiTransformer3DModel.from_pretrained(ckpt_path, torch_dtype=torch.bfloat16)

pipe = MochiPipeline.from_pretrained(model_id,  transformer=transformer)
pipe.enable_model_cpu_offload()
pipe.enable_vae_tiling()

with torch.autocast(device_type="cuda", dtype=torch.bfloat16, cache_enabled=False):
    frames = pipe(
        prompt="Close-up of a chameleon's eye, with its scaly skin changing color. Ultra high resolution 4k.",
        negative_prompt="",
        height=480,
        width=848,
        num_frames=85,
        num_inference_steps=50,
        guidance_scale=4.5,
        num_videos_per_prompt=1,
        generator=torch.Generator(device="cuda").manual_seed(0),
        max_sequence_length=256,
        output_type="pil",
    ).frames[0]

export_to_video(frames, "output.mp4", fps=30)
```

## MochiPipeline

[[autodoc]] MochiPipeline
  - all
  - __call__

## MochiPipelineOutput

[[autodoc]] pipelines.mochi.pipeline_output.MochiPipelineOutput