Spaces:
Running
on
Zero
Running
on
Zero
File size: 18,911 Bytes
a49cc2f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 |
# ControlNet training example for FLUX
The `train_controlnet_flux.py` script shows how to implement the ControlNet training procedure and adapt it for [FLUX](https://github.com/black-forest-labs/flux).
Training script provided by LibAI, which is an institution dedicated to the progress and achievement of artificial general intelligence. LibAI is the developer of [cutout.pro](https://www.cutout.pro/) and [promeai.pro](https://www.promeai.pro/).
> [!NOTE]
> **Memory consumption**
>
> Flux can be quite expensive to run on consumer hardware devices and as a result, ControlNet training of it comes with higher memory requirements than usual.
> **Gated access**
>
> As the model is gated, before using it with diffusers you first need to go to the [FLUX.1 [dev] Hugging Face page](https://huggingface.co/black-forest-labs/FLUX.1-dev), fill in the form and accept the gate. Once you are in, you need to log in so that your system knows you’ve accepted the gate. Use the command below to log in: `huggingface-cli login`
## Running locally with PyTorch
### Installing the dependencies
Before running the scripts, make sure to install the library's training dependencies:
**Important**
To make sure you can successfully run the latest versions of the example scripts, we highly recommend **installing from source** and keeping the install up to date as we update the example scripts frequently and install some example-specific requirements. To do this, execute the following steps in a new virtual environment:
```bash
git clone https://github.com/huggingface/diffusers
cd diffusers
pip install -e .
```
Then cd in the `examples/controlnet` folder and run
```bash
pip install -r requirements_flux.txt
```
And initialize an [🤗Accelerate](https://github.com/huggingface/accelerate/) environment with:
```bash
accelerate config
```
Or for a default accelerate configuration without answering questions about your environment
```bash
accelerate config default
```
Or if your environment doesn't support an interactive shell (e.g., a notebook)
```python
from accelerate.utils import write_basic_config
write_basic_config()
```
When running `accelerate config`, if we specify torch compile mode to True there can be dramatic speedups.
## Custom Datasets
We support dataset formats:
The original dataset is hosted in the [ControlNet repo](https://huggingface.co/lllyasviel/ControlNet/blob/main/training/fill50k.zip). We re-uploaded it to be compatible with `datasets` [here](https://huggingface.co/datasets/fusing/fill50k). Note that `datasets` handles dataloading within the training script. To use our example, add `--dataset_name=fusing/fill50k \` to the script and remove line `--jsonl_for_train` mentioned below.
We also support importing data from jsonl(xxx.jsonl),using `--jsonl_for_train` to enable it, here is a brief example of jsonl files:
```sh
{"image": "xxx", "text": "xxx", "conditioning_image": "xxx"}
{"image": "xxx", "text": "xxx", "conditioning_image": "xxx"}
```
## Training
Our training examples use two test conditioning images. They can be downloaded by running
```sh
wget https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/controlnet_training/conditioning_image_1.png
wget https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/controlnet_training/conditioning_image_2.png
```
Then run `huggingface-cli login` to log into your Hugging Face account. This is needed to be able to push the trained ControlNet parameters to Hugging Face Hub.
we can define the num_layers, num_single_layers, which determines the size of the control(default values are num_layers=4, num_single_layers=10)
```bash
accelerate launch train_controlnet_flux.py \
--pretrained_model_name_or_path="black-forest-labs/FLUX.1-dev" \
--dataset_name=fusing/fill50k \
--conditioning_image_column=conditioning_image \
--image_column=image \
--caption_column=text \
--output_dir="path to save model" \
--mixed_precision="bf16" \
--resolution=512 \
--learning_rate=1e-5 \
--max_train_steps=15000 \
--validation_steps=100 \
--checkpointing_steps=200 \
--validation_image "./conditioning_image_1.png" "./conditioning_image_2.png" \
--validation_prompt "red circle with blue background" "cyan circle with brown floral background" \
--train_batch_size=1 \
--gradient_accumulation_steps=4 \
--report_to="wandb" \
--num_double_layers=4 \
--num_single_layers=0 \
--seed=42 \
--push_to_hub \
```
To better track our training experiments, we're using the following flags in the command above:
* `report_to="wandb` will ensure the training runs are tracked on Weights and Biases.
* `validation_image`, `validation_prompt`, and `validation_steps` to allow the script to do a few validation inference runs. This allows us to qualitatively check if the training is progressing as expected.
Our experiments were conducted on a single 80GB A100 GPU.
### Inference
Once training is done, we can perform inference like so:
```python
import torch
from diffusers.utils import load_image
from diffusers.pipelines.flux.pipeline_flux_controlnet import FluxControlNetPipeline
from diffusers.models.controlnet_flux import FluxControlNetModel
base_model = 'black-forest-labs/FLUX.1-dev'
controlnet_model = 'promeai/FLUX.1-controlnet-lineart-promeai'
controlnet = FluxControlNetModel.from_pretrained(controlnet_model, torch_dtype=torch.bfloat16)
pipe = FluxControlNetPipeline.from_pretrained(
base_model,
controlnet=controlnet,
torch_dtype=torch.bfloat16
)
# enable memory optimizations
pipe.enable_model_cpu_offload()
control_image = load_image("https://huggingface.co/promeai/FLUX.1-controlnet-lineart-promeai/resolve/main/images/example-control.jpg")resize((1024, 1024))
prompt = "cute anime girl with massive fluffy fennec ears and a big fluffy tail blonde messy long hair blue eyes wearing a maid outfit with a long black gold leaf pattern dress and a white apron mouth open holding a fancy black forest cake with candles on top in the kitchen of an old dark Victorian mansion lit by candlelight with a bright window to the foggy forest and very expensive stuff everywhere"
image = pipe(
prompt,
control_image=control_image,
controlnet_conditioning_scale=0.6,
num_inference_steps=28,
guidance_scale=3.5,
).images[0]
image.save("./output.png")
```
## Apply Deepspeed Zero3
This is an experimental process, I am not sure if it is suitable for everyone, we used this process to successfully train 512 resolution on A100(40g) * 8.
Please modify some of the code in the script.
### 1.Customize zero3 settings
Copy the **accelerate_config_zero3.yaml**,modify `num_processes` according to the number of gpus you want to use:
```bash
compute_environment: LOCAL_MACHINE
debug: false
deepspeed_config:
gradient_accumulation_steps: 8
offload_optimizer_device: cpu
offload_param_device: cpu
zero3_init_flag: true
zero3_save_16bit_model: true
zero_stage: 3
distributed_type: DEEPSPEED
downcast_bf16: 'no'
enable_cpu_affinity: false
machine_rank: 0
main_training_function: main
mixed_precision: bf16
num_machines: 1
num_processes: 8
rdzv_backend: static
same_network: true
tpu_env: []
tpu_use_cluster: false
tpu_use_sudo: false
use_cpu: false
```
### 2.Precompute all inputs (latent, embeddings)
In the train_controlnet_flux.py, We need to pre-calculate all parameters and put them into batches.So we first need to rewrite the `compute_embeddings` function.
```python
def compute_embeddings(batch, proportion_empty_prompts, vae, flux_controlnet_pipeline, weight_dtype, is_train=True):
### compute text embeddings
prompt_batch = batch[args.caption_column]
captions = []
for caption in prompt_batch:
if random.random() < proportion_empty_prompts:
captions.append("")
elif isinstance(caption, str):
captions.append(caption)
elif isinstance(caption, (list, np.ndarray)):
# take a random caption if there are multiple
captions.append(random.choice(caption) if is_train else caption[0])
prompt_batch = captions
prompt_embeds, pooled_prompt_embeds, text_ids = flux_controlnet_pipeline.encode_prompt(
prompt_batch, prompt_2=prompt_batch
)
prompt_embeds = prompt_embeds.to(dtype=weight_dtype)
pooled_prompt_embeds = pooled_prompt_embeds.to(dtype=weight_dtype)
text_ids = text_ids.to(dtype=weight_dtype)
# text_ids [512,3] to [bs,512,3]
text_ids = text_ids.unsqueeze(0).expand(prompt_embeds.shape[0], -1, -1)
### compute latents
def _pack_latents(latents, batch_size, num_channels_latents, height, width):
latents = latents.view(batch_size, num_channels_latents, height // 2, 2, width // 2, 2)
latents = latents.permute(0, 2, 4, 1, 3, 5)
latents = latents.reshape(batch_size, (height // 2) * (width // 2), num_channels_latents * 4)
return latents
# vae encode
pixel_values = batch["pixel_values"]
pixel_values = torch.stack([image for image in pixel_values]).to(dtype=weight_dtype).to(vae.device)
pixel_latents_tmp = vae.encode(pixel_values).latent_dist.sample()
pixel_latents_tmp = (pixel_latents_tmp - vae.config.shift_factor) * vae.config.scaling_factor
pixel_latents = _pack_latents(
pixel_latents_tmp,
pixel_values.shape[0],
pixel_latents_tmp.shape[1],
pixel_latents_tmp.shape[2],
pixel_latents_tmp.shape[3],
)
control_values = batch["conditioning_pixel_values"]
control_values = torch.stack([image for image in control_values]).to(dtype=weight_dtype).to(vae.device)
control_latents = vae.encode(control_values).latent_dist.sample()
control_latents = (control_latents - vae.config.shift_factor) * vae.config.scaling_factor
control_latents = _pack_latents(
control_latents,
control_values.shape[0],
control_latents.shape[1],
control_latents.shape[2],
control_latents.shape[3],
)
# copied from pipeline_flux_controlnet
def _prepare_latent_image_ids(batch_size, height, width, device, dtype):
latent_image_ids = torch.zeros(height // 2, width // 2, 3)
latent_image_ids[..., 1] = latent_image_ids[..., 1] + torch.arange(height // 2)[:, None]
latent_image_ids[..., 2] = latent_image_ids[..., 2] + torch.arange(width // 2)[None, :]
latent_image_id_height, latent_image_id_width, latent_image_id_channels = latent_image_ids.shape
latent_image_ids = latent_image_ids[None, :].repeat(batch_size, 1, 1, 1)
latent_image_ids = latent_image_ids.reshape(
batch_size, latent_image_id_height * latent_image_id_width, latent_image_id_channels
)
return latent_image_ids.to(device=device, dtype=dtype)
latent_image_ids = _prepare_latent_image_ids(
batch_size=pixel_latents_tmp.shape[0],
height=pixel_latents_tmp.shape[2],
width=pixel_latents_tmp.shape[3],
device=pixel_values.device,
dtype=pixel_values.dtype,
)
# unet_added_cond_kwargs = {"pooled_prompt_embeds": pooled_prompt_embeds, "text_ids": text_ids}
return {"prompt_embeds": prompt_embeds, "pooled_prompt_embeds": pooled_prompt_embeds, "text_ids": text_ids, "pixel_latents": pixel_latents, "control_latents": control_latents, "latent_image_ids": latent_image_ids}
```
Because we need images to pass through vae, we need to preprocess the images in the dataset first. At the same time, vae requires more gpu memory, so you may need to modify the `batch_size` below
```diff
+train_dataset = prepare_train_dataset(train_dataset, accelerator)
with accelerator.main_process_first():
from datasets.fingerprint import Hasher
# fingerprint used by the cache for the other processes to load the result
# details: https://github.com/huggingface/diffusers/pull/4038#discussion_r1266078401
new_fingerprint = Hasher.hash(args)
train_dataset = train_dataset.map(
- compute_embeddings_fn, batched=True, new_fingerprint=new_fingerprint, batch_size=100
+ compute_embeddings_fn, batched=True, new_fingerprint=new_fingerprint, batch_size=10
)
del text_encoders, tokenizers
gc.collect()
torch.cuda.empty_cache()
# Then get the training dataset ready to be passed to the dataloader.
-train_dataset = prepare_train_dataset(train_dataset, accelerator)
```
### 3.Redefine the behavior of getting batchsize
Now that we have all the preprocessing done, we need to modify the `collate_fn` function.
```python
def collate_fn(examples):
pixel_values = torch.stack([example["pixel_values"] for example in examples])
pixel_values = pixel_values.to(memory_format=torch.contiguous_format).float()
conditioning_pixel_values = torch.stack([example["conditioning_pixel_values"] for example in examples])
conditioning_pixel_values = conditioning_pixel_values.to(memory_format=torch.contiguous_format).float()
pixel_latents = torch.stack([torch.tensor(example["pixel_latents"]) for example in examples])
pixel_latents = pixel_latents.to(memory_format=torch.contiguous_format).float()
control_latents = torch.stack([torch.tensor(example["control_latents"]) for example in examples])
control_latents = control_latents.to(memory_format=torch.contiguous_format).float()
latent_image_ids= torch.stack([torch.tensor(example["latent_image_ids"]) for example in examples])
prompt_ids = torch.stack([torch.tensor(example["prompt_embeds"]) for example in examples])
pooled_prompt_embeds = torch.stack([torch.tensor(example["pooled_prompt_embeds"]) for example in examples])
text_ids = torch.stack([torch.tensor(example["text_ids"]) for example in examples])
return {
"pixel_values": pixel_values,
"conditioning_pixel_values": conditioning_pixel_values,
"pixel_latents": pixel_latents,
"control_latents": control_latents,
"latent_image_ids": latent_image_ids,
"prompt_ids": prompt_ids,
"unet_added_conditions": {"pooled_prompt_embeds": pooled_prompt_embeds, "time_ids": text_ids},
}
```
Finally, we just need to modify the way of obtaining various parameters during training.
```python
for epoch in range(first_epoch, args.num_train_epochs):
for step, batch in enumerate(train_dataloader):
with accelerator.accumulate(flux_controlnet):
# Convert images to latent space
pixel_latents = batch["pixel_latents"].to(dtype=weight_dtype)
control_image = batch["control_latents"].to(dtype=weight_dtype)
latent_image_ids = batch["latent_image_ids"].to(dtype=weight_dtype)
# Sample noise that we'll add to the latents
noise = torch.randn_like(pixel_latents).to(accelerator.device).to(dtype=weight_dtype)
bsz = pixel_latents.shape[0]
# Sample a random timestep for each image
t = torch.sigmoid(torch.randn((bsz,), device=accelerator.device, dtype=weight_dtype))
# apply flow matching
noisy_latents = (
1 - t.unsqueeze(1).unsqueeze(2).repeat(1, pixel_latents.shape[1], pixel_latents.shape[2])
) * pixel_latents + t.unsqueeze(1).unsqueeze(2).repeat(
1, pixel_latents.shape[1], pixel_latents.shape[2]
) * noise
guidance_vec = torch.full(
(noisy_latents.shape[0],), 3.5, device=noisy_latents.device, dtype=weight_dtype
)
controlnet_block_samples, controlnet_single_block_samples = flux_controlnet(
hidden_states=noisy_latents,
controlnet_cond=control_image,
timestep=t,
guidance=guidance_vec,
pooled_projections=batch["unet_added_conditions"]["pooled_prompt_embeds"].to(dtype=weight_dtype),
encoder_hidden_states=batch["prompt_ids"].to(dtype=weight_dtype),
txt_ids=batch["unet_added_conditions"]["time_ids"][0].to(dtype=weight_dtype),
img_ids=latent_image_ids[0],
return_dict=False,
)
noise_pred = flux_transformer(
hidden_states=noisy_latents,
timestep=t,
guidance=guidance_vec,
pooled_projections=batch["unet_added_conditions"]["pooled_prompt_embeds"].to(dtype=weight_dtype),
encoder_hidden_states=batch["prompt_ids"].to(dtype=weight_dtype),
controlnet_block_samples=[sample.to(dtype=weight_dtype) for sample in controlnet_block_samples]
if controlnet_block_samples is not None
else None,
controlnet_single_block_samples=[
sample.to(dtype=weight_dtype) for sample in controlnet_single_block_samples
]
if controlnet_single_block_samples is not None
else None,
txt_ids=batch["unet_added_conditions"]["time_ids"][0].to(dtype=weight_dtype),
img_ids=latent_image_ids[0],
return_dict=False,
)[0]
```
Congratulations! You have completed all the required code modifications required for deepspeedzero3.
### 4.Training with deepspeedzero3
Start!!!
```bash
export pretrained_model_name_or_path='flux-dev-model-path'
export MODEL_TYPE='train_model_type'
export TRAIN_JSON_FILE="your_json_file"
export CONTROL_TYPE='control_preprocessor_type'
export CAPTION_COLUMN='caption_column'
export CACHE_DIR="/data/train_csr/.cache/huggingface/"
export OUTPUT_DIR='/data/train_csr/FLUX/MODEL_OUT/'$MODEL_TYPE
# The first step is to use Python to precompute all caches.Replace the first line below with this line. (I am not sure why using acclerate would cause problems.)
CUDA_VISIBLE_DEVICES=0 python3 train_controlnet_flux.py \
# The second step is to use the above accelerate config to train
accelerate launch --config_file "./accelerate_config_zero3.yaml" train_controlnet_flux.py \
--pretrained_model_name_or_path=$pretrained_model_name_or_path \
--jsonl_for_train=$TRAIN_JSON_FILE \
--conditioning_image_column=$CONTROL_TYPE \
--image_column=image \
--caption_column=$CAPTION_COLUMN\
--cache_dir=$CACHE_DIR \
--tracker_project_name=$MODEL_TYPE \
--output_dir=$OUTPUT_DIR \
--max_train_steps=500000 \
--mixed_precision bf16 \
--checkpointing_steps=1000 \
--gradient_accumulation_steps=8 \
--resolution=512 \
--train_batch_size=1 \
--learning_rate=1e-5 \
--num_double_layers=4 \
--num_single_layers=0 \
--gradient_checkpointing \
--resume_from_checkpoint="latest" \
# --use_adafactor \ dont use
# --validation_steps=3 \ not support
# --validation_image $VALIDATION_IMAGE \ not support
# --validation_prompt "xxx" \ not support
``` |