File size: 8,805 Bytes
a49cc2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
# coding=utf-8
# Copyright 2024 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import logging
import os
import sys
import tempfile

import safetensors


sys.path.append("..")
from test_examples_utils import ExamplesTestsAccelerate, run_command  # noqa: E402


logging.basicConfig(level=logging.DEBUG)

logger = logging.getLogger()
stream_handler = logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)


class DreamBoothLoRASANA(ExamplesTestsAccelerate):
    instance_data_dir = "docs/source/en/imgs"
    pretrained_model_name_or_path = "hf-internal-testing/tiny-sana-pipe"
    script_path = "examples/dreambooth/train_dreambooth_lora_sana.py"
    transformer_layer_type = "transformer_blocks.0.attn1.to_k"

    def test_dreambooth_lora_sana(self):
        with tempfile.TemporaryDirectory() as tmpdir:
            test_args = f"""
                {self.script_path}
                --pretrained_model_name_or_path {self.pretrained_model_name_or_path}
                --instance_data_dir {self.instance_data_dir}
                --resolution 32
                --train_batch_size 1
                --gradient_accumulation_steps 1
                --max_train_steps 2
                --learning_rate 5.0e-04
                --scale_lr
                --lr_scheduler constant
                --lr_warmup_steps 0
                --output_dir {tmpdir}
                --max_sequence_length 16
                """.split()

            test_args.extend(["--instance_prompt", ""])
            run_command(self._launch_args + test_args)
            # save_pretrained smoke test
            self.assertTrue(os.path.isfile(os.path.join(tmpdir, "pytorch_lora_weights.safetensors")))

            # make sure the state_dict has the correct naming in the parameters.
            lora_state_dict = safetensors.torch.load_file(os.path.join(tmpdir, "pytorch_lora_weights.safetensors"))
            is_lora = all("lora" in k for k in lora_state_dict.keys())
            self.assertTrue(is_lora)

            # when not training the text encoder, all the parameters in the state dict should start
            # with `"transformer"` in their names.
            starts_with_transformer = all(key.startswith("transformer") for key in lora_state_dict.keys())
            self.assertTrue(starts_with_transformer)

    def test_dreambooth_lora_latent_caching(self):
        with tempfile.TemporaryDirectory() as tmpdir:
            test_args = f"""
                {self.script_path}
                --pretrained_model_name_or_path {self.pretrained_model_name_or_path}
                --instance_data_dir {self.instance_data_dir}
                --resolution 32
                --train_batch_size 1
                --gradient_accumulation_steps 1
                --max_train_steps 2
                --cache_latents
                --learning_rate 5.0e-04
                --scale_lr
                --lr_scheduler constant
                --lr_warmup_steps 0
                --output_dir {tmpdir}
                --max_sequence_length 16
                """.split()

            test_args.extend(["--instance_prompt", ""])
            run_command(self._launch_args + test_args)
            # save_pretrained smoke test
            self.assertTrue(os.path.isfile(os.path.join(tmpdir, "pytorch_lora_weights.safetensors")))

            # make sure the state_dict has the correct naming in the parameters.
            lora_state_dict = safetensors.torch.load_file(os.path.join(tmpdir, "pytorch_lora_weights.safetensors"))
            is_lora = all("lora" in k for k in lora_state_dict.keys())
            self.assertTrue(is_lora)

            # when not training the text encoder, all the parameters in the state dict should start
            # with `"transformer"` in their names.
            starts_with_transformer = all(key.startswith("transformer") for key in lora_state_dict.keys())
            self.assertTrue(starts_with_transformer)

    def test_dreambooth_lora_layers(self):
        with tempfile.TemporaryDirectory() as tmpdir:
            test_args = f"""
                {self.script_path}
                --pretrained_model_name_or_path {self.pretrained_model_name_or_path}
                --instance_data_dir {self.instance_data_dir}
                --resolution 32
                --train_batch_size 1
                --gradient_accumulation_steps 1
                --max_train_steps 2
                --cache_latents
                --learning_rate 5.0e-04
                --scale_lr
                --lora_layers {self.transformer_layer_type}
                --lr_scheduler constant
                --lr_warmup_steps 0
                --output_dir {tmpdir}
                --max_sequence_length 16
                """.split()

            test_args.extend(["--instance_prompt", ""])
            run_command(self._launch_args + test_args)
            # save_pretrained smoke test
            self.assertTrue(os.path.isfile(os.path.join(tmpdir, "pytorch_lora_weights.safetensors")))

            # make sure the state_dict has the correct naming in the parameters.
            lora_state_dict = safetensors.torch.load_file(os.path.join(tmpdir, "pytorch_lora_weights.safetensors"))
            is_lora = all("lora" in k for k in lora_state_dict.keys())
            self.assertTrue(is_lora)

            # when not training the text encoder, all the parameters in the state dict should start
            # with `"transformer"` in their names. In this test, we only params of
            # `self.transformer_layer_type` should be in the state dict.
            starts_with_transformer = all(self.transformer_layer_type in key for key in lora_state_dict)
            self.assertTrue(starts_with_transformer)

    def test_dreambooth_lora_sana_checkpointing_checkpoints_total_limit(self):
        with tempfile.TemporaryDirectory() as tmpdir:
            test_args = f"""
            {self.script_path}
            --pretrained_model_name_or_path={self.pretrained_model_name_or_path}
            --instance_data_dir={self.instance_data_dir}
            --output_dir={tmpdir}
            --resolution=32
            --train_batch_size=1
            --gradient_accumulation_steps=1
            --max_train_steps=6
            --checkpoints_total_limit=2
            --checkpointing_steps=2
            --max_sequence_length 16
            """.split()

            test_args.extend(["--instance_prompt", ""])
            run_command(self._launch_args + test_args)

            self.assertEqual(
                {x for x in os.listdir(tmpdir) if "checkpoint" in x},
                {"checkpoint-4", "checkpoint-6"},
            )

    def test_dreambooth_lora_sana_checkpointing_checkpoints_total_limit_removes_multiple_checkpoints(self):
        with tempfile.TemporaryDirectory() as tmpdir:
            test_args = f"""
            {self.script_path}
            --pretrained_model_name_or_path={self.pretrained_model_name_or_path}
            --instance_data_dir={self.instance_data_dir}
            --output_dir={tmpdir}
            --resolution=32
            --train_batch_size=1
            --gradient_accumulation_steps=1
            --max_train_steps=4
            --checkpointing_steps=2
            --max_sequence_length 166
            """.split()

            test_args.extend(["--instance_prompt", ""])
            run_command(self._launch_args + test_args)

            self.assertEqual({x for x in os.listdir(tmpdir) if "checkpoint" in x}, {"checkpoint-2", "checkpoint-4"})

            resume_run_args = f"""
            {self.script_path}
            --pretrained_model_name_or_path={self.pretrained_model_name_or_path}
            --instance_data_dir={self.instance_data_dir}
            --output_dir={tmpdir}
            --resolution=32
            --train_batch_size=1
            --gradient_accumulation_steps=1
            --max_train_steps=8
            --checkpointing_steps=2
            --resume_from_checkpoint=checkpoint-4
            --checkpoints_total_limit=2
            --max_sequence_length 16
            """.split()

            resume_run_args.extend(["--instance_prompt", ""])
            run_command(self._launch_args + resume_run_args)

            self.assertEqual({x for x in os.listdir(tmpdir) if "checkpoint" in x}, {"checkpoint-6", "checkpoint-8"})