File size: 6,694 Bytes
a49cc2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
# coding=utf-8
# Copyright 2024 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest

import torch

from diffusers import AutoencoderKLLTXVideo
from diffusers.utils.testing_utils import (
    enable_full_determinism,
    floats_tensor,
    torch_device,
)

from ..test_modeling_common import ModelTesterMixin, UNetTesterMixin


enable_full_determinism()


class AutoencoderKLLTXVideo090Tests(ModelTesterMixin, UNetTesterMixin, unittest.TestCase):
    model_class = AutoencoderKLLTXVideo
    main_input_name = "sample"
    base_precision = 1e-2

    def get_autoencoder_kl_ltx_video_config(self):
        return {
            "in_channels": 3,
            "out_channels": 3,
            "latent_channels": 8,
            "block_out_channels": (8, 8, 8, 8),
            "decoder_block_out_channels": (8, 8, 8, 8),
            "layers_per_block": (1, 1, 1, 1, 1),
            "decoder_layers_per_block": (1, 1, 1, 1, 1),
            "spatio_temporal_scaling": (True, True, False, False),
            "decoder_spatio_temporal_scaling": (True, True, False, False),
            "decoder_inject_noise": (False, False, False, False, False),
            "upsample_residual": (False, False, False, False),
            "upsample_factor": (1, 1, 1, 1),
            "timestep_conditioning": False,
            "patch_size": 1,
            "patch_size_t": 1,
            "encoder_causal": True,
            "decoder_causal": False,
        }

    @property
    def dummy_input(self):
        batch_size = 2
        num_frames = 9
        num_channels = 3
        sizes = (16, 16)

        image = floats_tensor((batch_size, num_channels, num_frames) + sizes).to(torch_device)

        return {"sample": image}

    @property
    def input_shape(self):
        return (3, 9, 16, 16)

    @property
    def output_shape(self):
        return (3, 9, 16, 16)

    def prepare_init_args_and_inputs_for_common(self):
        init_dict = self.get_autoencoder_kl_ltx_video_config()
        inputs_dict = self.dummy_input
        return init_dict, inputs_dict

    def test_gradient_checkpointing_is_applied(self):
        expected_set = {
            "LTXVideoEncoder3d",
            "LTXVideoDecoder3d",
            "LTXVideoDownBlock3D",
            "LTXVideoMidBlock3d",
            "LTXVideoUpBlock3d",
        }
        super().test_gradient_checkpointing_is_applied(expected_set=expected_set)

    @unittest.skip("Unsupported test.")
    def test_outputs_equivalence(self):
        pass

    @unittest.skip("AutoencoderKLLTXVideo does not support `norm_num_groups` because it does not use GroupNorm.")
    def test_forward_with_norm_groups(self):
        pass


class AutoencoderKLLTXVideo091Tests(ModelTesterMixin, UNetTesterMixin, unittest.TestCase):
    model_class = AutoencoderKLLTXVideo
    main_input_name = "sample"
    base_precision = 1e-2

    def get_autoencoder_kl_ltx_video_config(self):
        return {
            "in_channels": 3,
            "out_channels": 3,
            "latent_channels": 8,
            "block_out_channels": (8, 8, 8, 8),
            "decoder_block_out_channels": (16, 32, 64),
            "layers_per_block": (1, 1, 1, 1),
            "decoder_layers_per_block": (1, 1, 1, 1),
            "spatio_temporal_scaling": (True, True, True, False),
            "decoder_spatio_temporal_scaling": (True, True, True),
            "decoder_inject_noise": (True, True, True, False),
            "upsample_residual": (True, True, True),
            "upsample_factor": (2, 2, 2),
            "timestep_conditioning": True,
            "patch_size": 1,
            "patch_size_t": 1,
            "encoder_causal": True,
            "decoder_causal": False,
        }

    @property
    def dummy_input(self):
        batch_size = 2
        num_frames = 9
        num_channels = 3
        sizes = (16, 16)

        image = floats_tensor((batch_size, num_channels, num_frames) + sizes).to(torch_device)
        timestep = torch.tensor([0.05] * batch_size, device=torch_device)

        return {"sample": image, "temb": timestep}

    @property
    def input_shape(self):
        return (3, 9, 16, 16)

    @property
    def output_shape(self):
        return (3, 9, 16, 16)

    def prepare_init_args_and_inputs_for_common(self):
        init_dict = self.get_autoencoder_kl_ltx_video_config()
        inputs_dict = self.dummy_input
        return init_dict, inputs_dict

    def test_gradient_checkpointing_is_applied(self):
        expected_set = {
            "LTXVideoEncoder3d",
            "LTXVideoDecoder3d",
            "LTXVideoDownBlock3D",
            "LTXVideoMidBlock3d",
            "LTXVideoUpBlock3d",
        }
        super().test_gradient_checkpointing_is_applied(expected_set=expected_set)

    @unittest.skip("Unsupported test.")
    def test_outputs_equivalence(self):
        pass

    @unittest.skip("AutoencoderKLLTXVideo does not support `norm_num_groups` because it does not use GroupNorm.")
    def test_forward_with_norm_groups(self):
        pass

    def test_enable_disable_tiling(self):
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

        torch.manual_seed(0)
        model = self.model_class(**init_dict).to(torch_device)

        inputs_dict.update({"return_dict": False})

        torch.manual_seed(0)
        output_without_tiling = model(**inputs_dict, generator=torch.manual_seed(0))[0]

        torch.manual_seed(0)
        model.enable_tiling()
        output_with_tiling = model(**inputs_dict, generator=torch.manual_seed(0))[0]

        self.assertLess(
            (output_without_tiling.detach().cpu().numpy() - output_with_tiling.detach().cpu().numpy()).max(),
            0.5,
            "VAE tiling should not affect the inference results",
        )

        torch.manual_seed(0)
        model.disable_tiling()
        output_without_tiling_2 = model(**inputs_dict, generator=torch.manual_seed(0))[0]

        self.assertEqual(
            output_without_tiling.detach().cpu().numpy().all(),
            output_without_tiling_2.detach().cpu().numpy().all(),
            "Without tiling outputs should match with the outputs when tiling is manually disabled.",
        )