Spaces:
Running
on
Zero
Running
on
Zero
File size: 9,647 Bytes
a49cc2f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 |
import gc
import inspect
import random
import unittest
import numpy as np
import torch
from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, T5EncoderModel
from diffusers import (
AutoencoderKL,
AutoPipelineForImage2Image,
FlowMatchEulerDiscreteScheduler,
SD3Transformer2DModel,
StableDiffusion3Img2ImgPipeline,
StableDiffusion3PAGImg2ImgPipeline,
)
from diffusers.utils.testing_utils import (
enable_full_determinism,
floats_tensor,
load_image,
require_torch_gpu,
slow,
torch_device,
)
from ..pipeline_params import (
IMAGE_TO_IMAGE_IMAGE_PARAMS,
TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS,
TEXT_GUIDED_IMAGE_VARIATION_PARAMS,
TEXT_TO_IMAGE_CALLBACK_CFG_PARAMS,
)
from ..test_pipelines_common import (
PipelineTesterMixin,
)
enable_full_determinism()
class StableDiffusion3PAGImg2ImgPipelineFastTests(unittest.TestCase, PipelineTesterMixin):
pipeline_class = StableDiffusion3PAGImg2ImgPipeline
params = TEXT_GUIDED_IMAGE_VARIATION_PARAMS.union({"pag_scale", "pag_adaptive_scale"}) - {"height", "width"}
required_optional_params = PipelineTesterMixin.required_optional_params - {"latents"}
batch_params = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS
image_params = IMAGE_TO_IMAGE_IMAGE_PARAMS
image_latens_params = IMAGE_TO_IMAGE_IMAGE_PARAMS
callback_cfg_params = TEXT_TO_IMAGE_CALLBACK_CFG_PARAMS
test_xformers_attention = False
def get_dummy_components(self):
torch.manual_seed(0)
transformer = SD3Transformer2DModel(
sample_size=32,
patch_size=1,
in_channels=4,
num_layers=2,
attention_head_dim=8,
num_attention_heads=4,
caption_projection_dim=32,
joint_attention_dim=32,
pooled_projection_dim=64,
out_channels=4,
)
clip_text_encoder_config = CLIPTextConfig(
bos_token_id=0,
eos_token_id=2,
hidden_size=32,
intermediate_size=37,
layer_norm_eps=1e-05,
num_attention_heads=4,
num_hidden_layers=5,
pad_token_id=1,
vocab_size=1000,
hidden_act="gelu",
projection_dim=32,
)
torch.manual_seed(0)
text_encoder = CLIPTextModelWithProjection(clip_text_encoder_config)
torch.manual_seed(0)
text_encoder_2 = CLIPTextModelWithProjection(clip_text_encoder_config)
text_encoder_3 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
tokenizer_2 = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
tokenizer_3 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
torch.manual_seed(0)
vae = AutoencoderKL(
sample_size=32,
in_channels=3,
out_channels=3,
block_out_channels=(4,),
layers_per_block=1,
latent_channels=4,
norm_num_groups=1,
use_quant_conv=False,
use_post_quant_conv=False,
shift_factor=0.0609,
scaling_factor=1.5035,
)
scheduler = FlowMatchEulerDiscreteScheduler()
return {
"scheduler": scheduler,
"text_encoder": text_encoder,
"text_encoder_2": text_encoder_2,
"text_encoder_3": text_encoder_3,
"tokenizer": tokenizer,
"tokenizer_2": tokenizer_2,
"tokenizer_3": tokenizer_3,
"transformer": transformer,
"vae": vae,
}
def get_dummy_inputs(self, device, seed=0):
image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device)
image = image / 2 + 0.5
if str(device).startswith("mps"):
generator = torch.manual_seed(seed)
else:
generator = torch.Generator(device="cpu").manual_seed(seed)
inputs = {
"prompt": "A painting of a squirrel eating a burger",
"image": image,
"generator": generator,
"num_inference_steps": 2,
"guidance_scale": 5.0,
"output_type": "np",
"pag_scale": 0.7,
}
return inputs
def test_pag_disable_enable(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components()
# base pipeline (expect same output when pag is disabled)
pipe_sd = StableDiffusion3Img2ImgPipeline(**components)
pipe_sd = pipe_sd.to(device)
pipe_sd.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
del inputs["pag_scale"]
assert (
"pag_scale" not in inspect.signature(pipe_sd.__call__).parameters
), f"`pag_scale` should not be a call parameter of the base pipeline {pipe_sd.__class__.__name__}."
out = pipe_sd(**inputs).images[0, -3:, -3:, -1]
components = self.get_dummy_components()
# pag disabled with pag_scale=0.0
pipe_pag = self.pipeline_class(**components)
pipe_pag = pipe_pag.to(device)
pipe_pag.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
inputs["pag_scale"] = 0.0
out_pag_disabled = pipe_pag(**inputs).images[0, -3:, -3:, -1]
assert np.abs(out.flatten() - out_pag_disabled.flatten()).max() < 1e-3
def test_pag_inference(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components()
pipe_pag = self.pipeline_class(**components, pag_applied_layers=["blocks.0"])
pipe_pag = pipe_pag.to(device)
pipe_pag.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
image = pipe_pag(**inputs).images
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (
1,
32,
32,
3,
), f"the shape of the output image should be (1, 32, 32, 3) but got {image.shape}"
expected_slice = np.array(
[0.66063476, 0.44838923, 0.5484299, 0.7242875, 0.5970012, 0.6015729, 0.53080845, 0.52220416, 0.56397927]
)
max_diff = np.abs(image_slice.flatten() - expected_slice).max()
self.assertLessEqual(max_diff, 1e-3)
@slow
@require_torch_gpu
class StableDiffusion3PAGImg2ImgPipelineIntegrationTests(unittest.TestCase):
pipeline_class = StableDiffusion3PAGImg2ImgPipeline
repo_id = "stabilityai/stable-diffusion-3-medium-diffusers"
def setUp(self):
super().setUp()
gc.collect()
torch.cuda.empty_cache()
def tearDown(self):
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def get_inputs(
self, device, generator_device="cpu", dtype=torch.float32, seed=0, guidance_scale=7.0, pag_scale=0.7
):
img_url = (
"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/sdxl-text2img.png"
)
init_image = load_image(img_url)
generator = torch.Generator(device=generator_device).manual_seed(seed)
inputs = {
"prompt": "an astronaut in a space suit walking through a jungle",
"generator": generator,
"image": init_image,
"num_inference_steps": 12,
"strength": 0.6,
"guidance_scale": guidance_scale,
"pag_scale": pag_scale,
"output_type": "np",
}
return inputs
def test_pag_cfg(self):
pipeline = AutoPipelineForImage2Image.from_pretrained(
self.repo_id, enable_pag=True, torch_dtype=torch.float16, pag_applied_layers=["blocks.17"]
)
pipeline.enable_model_cpu_offload()
pipeline.set_progress_bar_config(disable=None)
inputs = self.get_inputs(torch_device)
image = pipeline(**inputs).images
image_slice = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 1024, 1024, 3)
expected_slice = np.array(
[
0.16772461,
0.17626953,
0.18432617,
0.17822266,
0.18359375,
0.17626953,
0.17407227,
0.17700195,
0.17822266,
]
)
assert (
np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
), f"output is different from expected, {image_slice.flatten()}"
def test_pag_uncond(self):
pipeline = AutoPipelineForImage2Image.from_pretrained(
self.repo_id, enable_pag=True, torch_dtype=torch.float16, pag_applied_layers=["blocks.(4|17)"]
)
pipeline.enable_model_cpu_offload()
pipeline.set_progress_bar_config(disable=None)
inputs = self.get_inputs(torch_device, guidance_scale=0.0, pag_scale=1.8)
image = pipeline(**inputs).images
image_slice = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 1024, 1024, 3)
expected_slice = np.array(
[0.1508789, 0.16210938, 0.17138672, 0.16210938, 0.17089844, 0.16137695, 0.16235352, 0.16430664, 0.16455078]
)
assert (
np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
), f"output is different from expected, {image_slice.flatten()}"
|