File size: 9,647 Bytes
a49cc2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
import gc
import inspect
import random
import unittest

import numpy as np
import torch
from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, T5EncoderModel

from diffusers import (
    AutoencoderKL,
    AutoPipelineForImage2Image,
    FlowMatchEulerDiscreteScheduler,
    SD3Transformer2DModel,
    StableDiffusion3Img2ImgPipeline,
    StableDiffusion3PAGImg2ImgPipeline,
)
from diffusers.utils.testing_utils import (
    enable_full_determinism,
    floats_tensor,
    load_image,
    require_torch_gpu,
    slow,
    torch_device,
)

from ..pipeline_params import (
    IMAGE_TO_IMAGE_IMAGE_PARAMS,
    TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS,
    TEXT_GUIDED_IMAGE_VARIATION_PARAMS,
    TEXT_TO_IMAGE_CALLBACK_CFG_PARAMS,
)
from ..test_pipelines_common import (
    PipelineTesterMixin,
)


enable_full_determinism()


class StableDiffusion3PAGImg2ImgPipelineFastTests(unittest.TestCase, PipelineTesterMixin):
    pipeline_class = StableDiffusion3PAGImg2ImgPipeline
    params = TEXT_GUIDED_IMAGE_VARIATION_PARAMS.union({"pag_scale", "pag_adaptive_scale"}) - {"height", "width"}
    required_optional_params = PipelineTesterMixin.required_optional_params - {"latents"}
    batch_params = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS
    image_params = IMAGE_TO_IMAGE_IMAGE_PARAMS
    image_latens_params = IMAGE_TO_IMAGE_IMAGE_PARAMS
    callback_cfg_params = TEXT_TO_IMAGE_CALLBACK_CFG_PARAMS

    test_xformers_attention = False

    def get_dummy_components(self):
        torch.manual_seed(0)
        transformer = SD3Transformer2DModel(
            sample_size=32,
            patch_size=1,
            in_channels=4,
            num_layers=2,
            attention_head_dim=8,
            num_attention_heads=4,
            caption_projection_dim=32,
            joint_attention_dim=32,
            pooled_projection_dim=64,
            out_channels=4,
        )
        clip_text_encoder_config = CLIPTextConfig(
            bos_token_id=0,
            eos_token_id=2,
            hidden_size=32,
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
            pad_token_id=1,
            vocab_size=1000,
            hidden_act="gelu",
            projection_dim=32,
        )

        torch.manual_seed(0)
        text_encoder = CLIPTextModelWithProjection(clip_text_encoder_config)

        torch.manual_seed(0)
        text_encoder_2 = CLIPTextModelWithProjection(clip_text_encoder_config)

        text_encoder_3 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")

        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
        tokenizer_2 = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
        tokenizer_3 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")

        torch.manual_seed(0)
        vae = AutoencoderKL(
            sample_size=32,
            in_channels=3,
            out_channels=3,
            block_out_channels=(4,),
            layers_per_block=1,
            latent_channels=4,
            norm_num_groups=1,
            use_quant_conv=False,
            use_post_quant_conv=False,
            shift_factor=0.0609,
            scaling_factor=1.5035,
        )

        scheduler = FlowMatchEulerDiscreteScheduler()

        return {
            "scheduler": scheduler,
            "text_encoder": text_encoder,
            "text_encoder_2": text_encoder_2,
            "text_encoder_3": text_encoder_3,
            "tokenizer": tokenizer,
            "tokenizer_2": tokenizer_2,
            "tokenizer_3": tokenizer_3,
            "transformer": transformer,
            "vae": vae,
        }

    def get_dummy_inputs(self, device, seed=0):
        image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device)
        image = image / 2 + 0.5
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device="cpu").manual_seed(seed)

        inputs = {
            "prompt": "A painting of a squirrel eating a burger",
            "image": image,
            "generator": generator,
            "num_inference_steps": 2,
            "guidance_scale": 5.0,
            "output_type": "np",
            "pag_scale": 0.7,
        }
        return inputs

    def test_pag_disable_enable(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
        components = self.get_dummy_components()

        # base pipeline (expect same output when pag is disabled)
        pipe_sd = StableDiffusion3Img2ImgPipeline(**components)
        pipe_sd = pipe_sd.to(device)
        pipe_sd.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(device)
        del inputs["pag_scale"]
        assert (
            "pag_scale" not in inspect.signature(pipe_sd.__call__).parameters
        ), f"`pag_scale` should not be a call parameter of the base pipeline {pipe_sd.__class__.__name__}."
        out = pipe_sd(**inputs).images[0, -3:, -3:, -1]

        components = self.get_dummy_components()

        # pag disabled with pag_scale=0.0
        pipe_pag = self.pipeline_class(**components)
        pipe_pag = pipe_pag.to(device)
        pipe_pag.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(device)
        inputs["pag_scale"] = 0.0
        out_pag_disabled = pipe_pag(**inputs).images[0, -3:, -3:, -1]

        assert np.abs(out.flatten() - out_pag_disabled.flatten()).max() < 1e-3

    def test_pag_inference(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
        components = self.get_dummy_components()

        pipe_pag = self.pipeline_class(**components, pag_applied_layers=["blocks.0"])
        pipe_pag = pipe_pag.to(device)
        pipe_pag.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(device)
        image = pipe_pag(**inputs).images
        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (
            1,
            32,
            32,
            3,
        ), f"the shape of the output image should be (1, 32, 32, 3) but got {image.shape}"

        expected_slice = np.array(
            [0.66063476, 0.44838923, 0.5484299, 0.7242875, 0.5970012, 0.6015729, 0.53080845, 0.52220416, 0.56397927]
        )
        max_diff = np.abs(image_slice.flatten() - expected_slice).max()
        self.assertLessEqual(max_diff, 1e-3)


@slow
@require_torch_gpu
class StableDiffusion3PAGImg2ImgPipelineIntegrationTests(unittest.TestCase):
    pipeline_class = StableDiffusion3PAGImg2ImgPipeline
    repo_id = "stabilityai/stable-diffusion-3-medium-diffusers"

    def setUp(self):
        super().setUp()
        gc.collect()
        torch.cuda.empty_cache()

    def tearDown(self):
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

    def get_inputs(
        self, device, generator_device="cpu", dtype=torch.float32, seed=0, guidance_scale=7.0, pag_scale=0.7
    ):
        img_url = (
            "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/sdxl-text2img.png"
        )
        init_image = load_image(img_url)

        generator = torch.Generator(device=generator_device).manual_seed(seed)
        inputs = {
            "prompt": "an astronaut in a space suit walking through a jungle",
            "generator": generator,
            "image": init_image,
            "num_inference_steps": 12,
            "strength": 0.6,
            "guidance_scale": guidance_scale,
            "pag_scale": pag_scale,
            "output_type": "np",
        }
        return inputs

    def test_pag_cfg(self):
        pipeline = AutoPipelineForImage2Image.from_pretrained(
            self.repo_id, enable_pag=True, torch_dtype=torch.float16, pag_applied_layers=["blocks.17"]
        )
        pipeline.enable_model_cpu_offload()
        pipeline.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        image = pipeline(**inputs).images
        image_slice = image[0, -3:, -3:, -1].flatten()
        assert image.shape == (1, 1024, 1024, 3)
        expected_slice = np.array(
            [
                0.16772461,
                0.17626953,
                0.18432617,
                0.17822266,
                0.18359375,
                0.17626953,
                0.17407227,
                0.17700195,
                0.17822266,
            ]
        )
        assert (
            np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
        ), f"output is different from expected, {image_slice.flatten()}"

    def test_pag_uncond(self):
        pipeline = AutoPipelineForImage2Image.from_pretrained(
            self.repo_id, enable_pag=True, torch_dtype=torch.float16, pag_applied_layers=["blocks.(4|17)"]
        )
        pipeline.enable_model_cpu_offload()
        pipeline.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device, guidance_scale=0.0, pag_scale=1.8)
        image = pipeline(**inputs).images
        image_slice = image[0, -3:, -3:, -1].flatten()
        assert image.shape == (1, 1024, 1024, 3)
        expected_slice = np.array(
            [0.1508789, 0.16210938, 0.17138672, 0.16210938, 0.17089844, 0.16137695, 0.16235352, 0.16430664, 0.16455078]
        )
        assert (
            np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
        ), f"output is different from expected, {image_slice.flatten()}"