Spaces:
Running
on
Zero
Running
on
Zero
File size: 38,009 Bytes
a49cc2f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 |
# coding=utf-8
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import tempfile
import unittest
from typing import List
import numpy as np
from transformers import AutoTokenizer, CLIPTextModel, CLIPTokenizer, T5EncoderModel
from diffusers import (
AutoencoderKL,
FlowMatchEulerDiscreteScheduler,
FluxPipeline,
FluxTransformer2DModel,
TorchAoConfig,
)
from diffusers.models.attention_processor import Attention
from diffusers.utils.testing_utils import (
enable_full_determinism,
is_torch_available,
is_torchao_available,
nightly,
require_torch,
require_torch_gpu,
require_torchao_version_greater_or_equal,
slow,
torch_device,
)
enable_full_determinism()
if is_torch_available():
import torch
import torch.nn as nn
class LoRALayer(nn.Module):
"""Wraps a linear layer with LoRA-like adapter - Used for testing purposes only
Taken from
https://github.com/huggingface/transformers/blob/566302686a71de14125717dea9a6a45b24d42b37/tests/quantization/bnb/test_4bit.py#L62C5-L78C77
"""
def __init__(self, module: nn.Module, rank: int):
super().__init__()
self.module = module
self.adapter = nn.Sequential(
nn.Linear(module.in_features, rank, bias=False),
nn.Linear(rank, module.out_features, bias=False),
)
small_std = (2.0 / (5 * min(module.in_features, module.out_features))) ** 0.5
nn.init.normal_(self.adapter[0].weight, std=small_std)
nn.init.zeros_(self.adapter[1].weight)
self.adapter.to(module.weight.device)
def forward(self, input, *args, **kwargs):
return self.module(input, *args, **kwargs) + self.adapter(input)
if is_torchao_available():
from torchao.dtypes import AffineQuantizedTensor
from torchao.quantization.linear_activation_quantized_tensor import LinearActivationQuantizedTensor
from torchao.utils import get_model_size_in_bytes
@require_torch
@require_torch_gpu
@require_torchao_version_greater_or_equal("0.7.0")
class TorchAoConfigTest(unittest.TestCase):
def test_to_dict(self):
"""
Makes sure the config format is properly set
"""
quantization_config = TorchAoConfig("int4_weight_only")
torchao_orig_config = quantization_config.to_dict()
for key in torchao_orig_config:
self.assertEqual(getattr(quantization_config, key), torchao_orig_config[key])
def test_post_init_check(self):
"""
Test kwargs validations in TorchAoConfig
"""
_ = TorchAoConfig("int4_weight_only")
with self.assertRaisesRegex(ValueError, "is not supported yet"):
_ = TorchAoConfig("uint8")
with self.assertRaisesRegex(ValueError, "does not support the following keyword arguments"):
_ = TorchAoConfig("int4_weight_only", group_size1=32)
def test_repr(self):
"""
Check that there is no error in the repr
"""
quantization_config = TorchAoConfig("int4_weight_only", modules_to_not_convert=["conv"], group_size=8)
expected_repr = """TorchAoConfig {
"modules_to_not_convert": [
"conv"
],
"quant_method": "torchao",
"quant_type": "int4_weight_only",
"quant_type_kwargs": {
"group_size": 8
}
}""".replace(" ", "").replace("\n", "")
quantization_repr = repr(quantization_config).replace(" ", "").replace("\n", "")
self.assertEqual(quantization_repr, expected_repr)
# Slices for these tests have been obtained on our aws-g6e-xlarge-plus runners
@require_torch
@require_torch_gpu
@require_torchao_version_greater_or_equal("0.7.0")
class TorchAoTest(unittest.TestCase):
def tearDown(self):
gc.collect()
torch.cuda.empty_cache()
def get_dummy_components(
self, quantization_config: TorchAoConfig, model_id: str = "hf-internal-testing/tiny-flux-pipe"
):
transformer = FluxTransformer2DModel.from_pretrained(
model_id,
subfolder="transformer",
quantization_config=quantization_config,
torch_dtype=torch.bfloat16,
)
text_encoder = CLIPTextModel.from_pretrained(model_id, subfolder="text_encoder", torch_dtype=torch.bfloat16)
text_encoder_2 = T5EncoderModel.from_pretrained(
model_id, subfolder="text_encoder_2", torch_dtype=torch.bfloat16
)
tokenizer = CLIPTokenizer.from_pretrained(model_id, subfolder="tokenizer")
tokenizer_2 = AutoTokenizer.from_pretrained(model_id, subfolder="tokenizer_2")
vae = AutoencoderKL.from_pretrained(model_id, subfolder="vae", torch_dtype=torch.bfloat16)
scheduler = FlowMatchEulerDiscreteScheduler()
return {
"scheduler": scheduler,
"text_encoder": text_encoder,
"text_encoder_2": text_encoder_2,
"tokenizer": tokenizer,
"tokenizer_2": tokenizer_2,
"transformer": transformer,
"vae": vae,
}
def get_dummy_inputs(self, device: torch.device, seed: int = 0):
if str(device).startswith("mps"):
generator = torch.manual_seed(seed)
else:
generator = torch.Generator().manual_seed(seed)
inputs = {
"prompt": "an astronaut riding a horse in space",
"height": 32,
"width": 32,
"num_inference_steps": 2,
"output_type": "np",
"generator": generator,
}
return inputs
def get_dummy_tensor_inputs(self, device=None, seed: int = 0):
batch_size = 1
num_latent_channels = 4
num_image_channels = 3
height = width = 4
sequence_length = 48
embedding_dim = 32
torch.manual_seed(seed)
hidden_states = torch.randn((batch_size, height * width, num_latent_channels)).to(device, dtype=torch.bfloat16)
torch.manual_seed(seed)
encoder_hidden_states = torch.randn((batch_size, sequence_length, embedding_dim)).to(
device, dtype=torch.bfloat16
)
torch.manual_seed(seed)
pooled_prompt_embeds = torch.randn((batch_size, embedding_dim)).to(device, dtype=torch.bfloat16)
torch.manual_seed(seed)
text_ids = torch.randn((sequence_length, num_image_channels)).to(device, dtype=torch.bfloat16)
torch.manual_seed(seed)
image_ids = torch.randn((height * width, num_image_channels)).to(device, dtype=torch.bfloat16)
timestep = torch.tensor([1.0]).to(device, dtype=torch.bfloat16).expand(batch_size)
return {
"hidden_states": hidden_states,
"encoder_hidden_states": encoder_hidden_states,
"pooled_projections": pooled_prompt_embeds,
"txt_ids": text_ids,
"img_ids": image_ids,
"timestep": timestep,
}
def _test_quant_type(self, quantization_config: TorchAoConfig, expected_slice: List[float], model_id: str):
components = self.get_dummy_components(quantization_config, model_id)
pipe = FluxPipeline(**components)
pipe.to(device=torch_device)
inputs = self.get_dummy_inputs(torch_device)
output = pipe(**inputs)[0]
output_slice = output[-1, -1, -3:, -3:].flatten()
self.assertTrue(np.allclose(output_slice, expected_slice, atol=1e-3, rtol=1e-3))
def test_quantization(self):
for model_id in ["hf-internal-testing/tiny-flux-pipe", "hf-internal-testing/tiny-flux-sharded"]:
# fmt: off
QUANTIZATION_TYPES_TO_TEST = [
("int4wo", np.array([0.4648, 0.5234, 0.5547, 0.4219, 0.4414, 0.6445, 0.4336, 0.4531, 0.5625])),
("int4dq", np.array([0.4688, 0.5195, 0.5547, 0.418, 0.4414, 0.6406, 0.4336, 0.4531, 0.5625])),
("int8wo", np.array([0.4648, 0.5195, 0.5547, 0.4199, 0.4414, 0.6445, 0.4316, 0.4531, 0.5625])),
("int8dq", np.array([0.4648, 0.5195, 0.5547, 0.4199, 0.4414, 0.6445, 0.4316, 0.4531, 0.5625])),
("uint4wo", np.array([0.4609, 0.5234, 0.5508, 0.4199, 0.4336, 0.6406, 0.4316, 0.4531, 0.5625])),
("uint7wo", np.array([0.4648, 0.5195, 0.5547, 0.4219, 0.4414, 0.6445, 0.4316, 0.4531, 0.5625])),
]
if TorchAoConfig._is_cuda_capability_atleast_8_9():
QUANTIZATION_TYPES_TO_TEST.extend([
("float8wo_e5m2", np.array([0.4590, 0.5273, 0.5547, 0.4219, 0.4375, 0.6406, 0.4316, 0.4512, 0.5625])),
("float8wo_e4m3", np.array([0.4648, 0.5234, 0.5547, 0.4219, 0.4414, 0.6406, 0.4316, 0.4531, 0.5625])),
# =====
# The following lead to an internal torch error:
# RuntimeError: mat2 shape (32x4 must be divisible by 16
# Skip these for now; TODO(aryan): investigate later
# ("float8dq_e4m3", np.array([0, 0, 0, 0, 0, 0, 0, 0, 0])),
# ("float8dq_e4m3_tensor", np.array([0, 0, 0, 0, 0, 0, 0, 0, 0])),
# =====
# Cutlass fails to initialize for below
# ("float8dq_e4m3_row", np.array([0, 0, 0, 0, 0, 0, 0, 0, 0])),
# =====
("fp4", np.array([0.4668, 0.5195, 0.5547, 0.4199, 0.4434, 0.6445, 0.4316, 0.4531, 0.5625])),
("fp6", np.array([0.4668, 0.5195, 0.5547, 0.4199, 0.4434, 0.6445, 0.4316, 0.4531, 0.5625])),
])
# fmt: on
for quantization_name, expected_slice in QUANTIZATION_TYPES_TO_TEST:
quant_kwargs = {}
if quantization_name in ["uint4wo", "uint7wo"]:
# The dummy flux model that we use has smaller dimensions. This imposes some restrictions on group_size here
quant_kwargs.update({"group_size": 16})
quantization_config = TorchAoConfig(
quant_type=quantization_name, modules_to_not_convert=["x_embedder"], **quant_kwargs
)
self._test_quant_type(quantization_config, expected_slice, model_id)
def test_int4wo_quant_bfloat16_conversion(self):
"""
Tests whether the dtype of model will be modified to bfloat16 for int4 weight-only quantization.
"""
quantization_config = TorchAoConfig("int4_weight_only", group_size=64)
quantized_model = FluxTransformer2DModel.from_pretrained(
"hf-internal-testing/tiny-flux-pipe",
subfolder="transformer",
quantization_config=quantization_config,
torch_dtype=torch.bfloat16,
)
weight = quantized_model.transformer_blocks[0].ff.net[2].weight
self.assertTrue(isinstance(weight, AffineQuantizedTensor))
self.assertEqual(weight.quant_min, 0)
self.assertEqual(weight.quant_max, 15)
def test_device_map(self):
# Note: We were not checking if the weight tensor's were AffineQuantizedTensor's before. If we did
# it would have errored out. Now, we do. So, device_map basically never worked with or without
# sharded checkpoints. This will need to be supported in the future (TODO(aryan))
"""
Test if the quantized model int4 weight-only is working properly with "auto" and custom device maps.
The custom device map performs cpu/disk offloading as well. Also verifies that the device map is
correctly set (in the `hf_device_map` attribute of the model).
"""
custom_device_map_dict = {
"time_text_embed": torch_device,
"context_embedder": torch_device,
"x_embedder": torch_device,
"transformer_blocks.0": "cpu",
"single_transformer_blocks.0": "disk",
"norm_out": torch_device,
"proj_out": "cpu",
}
device_maps = ["auto", custom_device_map_dict]
# inputs = self.get_dummy_tensor_inputs(torch_device)
# expected_slice = np.array([0.3457, -0.0366, 0.0105, -0.2275, -0.4941, 0.4395, -0.166, -0.6641, 0.4375])
for device_map in device_maps:
# device_map_to_compare = {"": 0} if device_map == "auto" else device_map
# Test non-sharded model - should work
with self.assertRaises(NotImplementedError):
with tempfile.TemporaryDirectory() as offload_folder:
quantization_config = TorchAoConfig("int4_weight_only", group_size=64)
_ = FluxTransformer2DModel.from_pretrained(
"hf-internal-testing/tiny-flux-pipe",
subfolder="transformer",
quantization_config=quantization_config,
device_map=device_map,
torch_dtype=torch.bfloat16,
offload_folder=offload_folder,
)
# weight = quantized_model.transformer_blocks[0].ff.net[2].weight
# self.assertTrue(quantized_model.hf_device_map == device_map_to_compare)
# self.assertTrue(isinstance(weight, AffineQuantizedTensor))
# output = quantized_model(**inputs)[0]
# output_slice = output.flatten()[-9:].detach().float().cpu().numpy()
# self.assertTrue(np.allclose(output_slice, expected_slice, atol=1e-3, rtol=1e-3))
# Test sharded model - should not work
with self.assertRaises(NotImplementedError):
with tempfile.TemporaryDirectory() as offload_folder:
quantization_config = TorchAoConfig("int4_weight_only", group_size=64)
_ = FluxTransformer2DModel.from_pretrained(
"hf-internal-testing/tiny-flux-sharded",
subfolder="transformer",
quantization_config=quantization_config,
device_map=device_map,
torch_dtype=torch.bfloat16,
offload_folder=offload_folder,
)
# weight = quantized_model.transformer_blocks[0].ff.net[2].weight
# self.assertTrue(quantized_model.hf_device_map == device_map_to_compare)
# self.assertTrue(isinstance(weight, AffineQuantizedTensor))
# output = quantized_model(**inputs)[0]
# output_slice = output.flatten()[-9:].detach().float().cpu().numpy()
# self.assertTrue(np.allclose(output_slice, expected_slice, atol=1e-3, rtol=1e-3))
def test_modules_to_not_convert(self):
quantization_config = TorchAoConfig("int8_weight_only", modules_to_not_convert=["transformer_blocks.0"])
quantized_model_with_not_convert = FluxTransformer2DModel.from_pretrained(
"hf-internal-testing/tiny-flux-pipe",
subfolder="transformer",
quantization_config=quantization_config,
torch_dtype=torch.bfloat16,
)
unquantized_layer = quantized_model_with_not_convert.transformer_blocks[0].ff.net[2]
self.assertTrue(isinstance(unquantized_layer, torch.nn.Linear))
self.assertFalse(isinstance(unquantized_layer.weight, AffineQuantizedTensor))
self.assertEqual(unquantized_layer.weight.dtype, torch.bfloat16)
quantized_layer = quantized_model_with_not_convert.proj_out
self.assertTrue(isinstance(quantized_layer.weight, AffineQuantizedTensor))
quantization_config = TorchAoConfig("int8_weight_only")
quantized_model = FluxTransformer2DModel.from_pretrained(
"hf-internal-testing/tiny-flux-pipe",
subfolder="transformer",
quantization_config=quantization_config,
torch_dtype=torch.bfloat16,
)
size_quantized_with_not_convert = get_model_size_in_bytes(quantized_model_with_not_convert)
size_quantized = get_model_size_in_bytes(quantized_model)
self.assertTrue(size_quantized < size_quantized_with_not_convert)
def test_training(self):
quantization_config = TorchAoConfig("int8_weight_only")
quantized_model = FluxTransformer2DModel.from_pretrained(
"hf-internal-testing/tiny-flux-pipe",
subfolder="transformer",
quantization_config=quantization_config,
torch_dtype=torch.bfloat16,
).to(torch_device)
for param in quantized_model.parameters():
# freeze the model as only adapter layers will be trained
param.requires_grad = False
if param.ndim == 1:
param.data = param.data.to(torch.float32)
for _, module in quantized_model.named_modules():
if isinstance(module, Attention):
module.to_q = LoRALayer(module.to_q, rank=4)
module.to_k = LoRALayer(module.to_k, rank=4)
module.to_v = LoRALayer(module.to_v, rank=4)
with torch.amp.autocast(str(torch_device), dtype=torch.bfloat16):
inputs = self.get_dummy_tensor_inputs(torch_device)
output = quantized_model(**inputs)[0]
output.norm().backward()
for module in quantized_model.modules():
if isinstance(module, LoRALayer):
self.assertTrue(module.adapter[1].weight.grad is not None)
self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0)
@nightly
def test_torch_compile(self):
r"""Test that verifies if torch.compile works with torchao quantization."""
for model_id in ["hf-internal-testing/tiny-flux-pipe", "hf-internal-testing/tiny-flux-sharded"]:
quantization_config = TorchAoConfig("int8_weight_only")
components = self.get_dummy_components(quantization_config, model_id=model_id)
pipe = FluxPipeline(**components)
pipe.to(device=torch_device)
inputs = self.get_dummy_inputs(torch_device)
normal_output = pipe(**inputs)[0].flatten()[-32:]
pipe.transformer = torch.compile(pipe.transformer, mode="max-autotune", fullgraph=True, dynamic=False)
inputs = self.get_dummy_inputs(torch_device)
compile_output = pipe(**inputs)[0].flatten()[-32:]
# Note: Seems to require higher tolerance
self.assertTrue(np.allclose(normal_output, compile_output, atol=1e-2, rtol=1e-3))
def test_memory_footprint(self):
r"""
A simple test to check if the model conversion has been done correctly by checking on the
memory footprint of the converted model and the class type of the linear layers of the converted models
"""
for model_id in ["hf-internal-testing/tiny-flux-pipe", "hf-internal-testing/tiny-flux-sharded"]:
transformer_int4wo = self.get_dummy_components(TorchAoConfig("int4wo"), model_id=model_id)["transformer"]
transformer_int4wo_gs32 = self.get_dummy_components(
TorchAoConfig("int4wo", group_size=32), model_id=model_id
)["transformer"]
transformer_int8wo = self.get_dummy_components(TorchAoConfig("int8wo"), model_id=model_id)["transformer"]
transformer_bf16 = self.get_dummy_components(None, model_id=model_id)["transformer"]
# Will not quantized all the layers by default due to the model weights shapes not being divisible by group_size=64
for block in transformer_int4wo.transformer_blocks:
self.assertTrue(isinstance(block.ff.net[2].weight, AffineQuantizedTensor))
self.assertTrue(isinstance(block.ff_context.net[2].weight, AffineQuantizedTensor))
# Will quantize all the linear layers except x_embedder
for name, module in transformer_int4wo_gs32.named_modules():
if isinstance(module, nn.Linear) and name not in ["x_embedder"]:
self.assertTrue(isinstance(module.weight, AffineQuantizedTensor))
# Will quantize all the linear layers
for module in transformer_int8wo.modules():
if isinstance(module, nn.Linear):
self.assertTrue(isinstance(module.weight, AffineQuantizedTensor))
total_int4wo = get_model_size_in_bytes(transformer_int4wo)
total_int4wo_gs32 = get_model_size_in_bytes(transformer_int4wo_gs32)
total_int8wo = get_model_size_in_bytes(transformer_int8wo)
total_bf16 = get_model_size_in_bytes(transformer_bf16)
# TODO: refactor to align with other quantization tests
# Latter has smaller group size, so more groups -> more scales and zero points
self.assertTrue(total_int4wo < total_int4wo_gs32)
# int8 quantizes more layers compare to int4 with default group size
self.assertTrue(total_int8wo < total_int4wo)
# int4wo does not quantize too many layers because of default group size, but for the layers it does
# there is additional overhead of scales and zero points
self.assertTrue(total_bf16 < total_int4wo)
def test_wrong_config(self):
with self.assertRaises(ValueError):
self.get_dummy_components(TorchAoConfig("int42"))
def test_sequential_cpu_offload(self):
r"""
A test that checks if inference runs as expected when sequential cpu offloading is enabled.
"""
quantization_config = TorchAoConfig("int8wo")
components = self.get_dummy_components(quantization_config)
pipe = FluxPipeline(**components)
pipe.enable_sequential_cpu_offload()
inputs = self.get_dummy_inputs(torch_device)
_ = pipe(**inputs)
# Slices for these tests have been obtained on our aws-g6e-xlarge-plus runners
@require_torch
@require_torch_gpu
@require_torchao_version_greater_or_equal("0.7.0")
class TorchAoSerializationTest(unittest.TestCase):
model_name = "hf-internal-testing/tiny-flux-pipe"
def tearDown(self):
gc.collect()
torch.cuda.empty_cache()
def get_dummy_model(self, quant_method, quant_method_kwargs, device=None):
quantization_config = TorchAoConfig(quant_method, **quant_method_kwargs)
quantized_model = FluxTransformer2DModel.from_pretrained(
self.model_name,
subfolder="transformer",
quantization_config=quantization_config,
torch_dtype=torch.bfloat16,
)
return quantized_model.to(device)
def get_dummy_tensor_inputs(self, device=None, seed: int = 0):
batch_size = 1
num_latent_channels = 4
num_image_channels = 3
height = width = 4
sequence_length = 48
embedding_dim = 32
torch.manual_seed(seed)
hidden_states = torch.randn((batch_size, height * width, num_latent_channels)).to(device, dtype=torch.bfloat16)
encoder_hidden_states = torch.randn((batch_size, sequence_length, embedding_dim)).to(
device, dtype=torch.bfloat16
)
pooled_prompt_embeds = torch.randn((batch_size, embedding_dim)).to(device, dtype=torch.bfloat16)
text_ids = torch.randn((sequence_length, num_image_channels)).to(device, dtype=torch.bfloat16)
image_ids = torch.randn((height * width, num_image_channels)).to(device, dtype=torch.bfloat16)
timestep = torch.tensor([1.0]).to(device, dtype=torch.bfloat16).expand(batch_size)
return {
"hidden_states": hidden_states,
"encoder_hidden_states": encoder_hidden_states,
"pooled_projections": pooled_prompt_embeds,
"txt_ids": text_ids,
"img_ids": image_ids,
"timestep": timestep,
}
def _test_original_model_expected_slice(self, quant_method, quant_method_kwargs, expected_slice):
quantized_model = self.get_dummy_model(quant_method, quant_method_kwargs, torch_device)
inputs = self.get_dummy_tensor_inputs(torch_device)
output = quantized_model(**inputs)[0]
output_slice = output.flatten()[-9:].detach().float().cpu().numpy()
weight = quantized_model.transformer_blocks[0].ff.net[2].weight
self.assertTrue(isinstance(weight, (AffineQuantizedTensor, LinearActivationQuantizedTensor)))
self.assertTrue(np.allclose(output_slice, expected_slice, atol=1e-3, rtol=1e-3))
def _check_serialization_expected_slice(self, quant_method, quant_method_kwargs, expected_slice, device):
quantized_model = self.get_dummy_model(quant_method, quant_method_kwargs, device)
with tempfile.TemporaryDirectory() as tmp_dir:
quantized_model.save_pretrained(tmp_dir, safe_serialization=False)
loaded_quantized_model = FluxTransformer2DModel.from_pretrained(
tmp_dir, torch_dtype=torch.bfloat16, use_safetensors=False
).to(device=torch_device)
inputs = self.get_dummy_tensor_inputs(torch_device)
output = loaded_quantized_model(**inputs)[0]
output_slice = output.flatten()[-9:].detach().float().cpu().numpy()
self.assertTrue(
isinstance(
loaded_quantized_model.proj_out.weight, (AffineQuantizedTensor, LinearActivationQuantizedTensor)
)
)
self.assertTrue(np.allclose(output_slice, expected_slice, atol=1e-3, rtol=1e-3))
def test_int_a8w8_cuda(self):
quant_method, quant_method_kwargs = "int8_dynamic_activation_int8_weight", {}
expected_slice = np.array([0.3633, -0.1357, -0.0188, -0.249, -0.4688, 0.5078, -0.1289, -0.6914, 0.4551])
device = "cuda"
self._test_original_model_expected_slice(quant_method, quant_method_kwargs, expected_slice)
self._check_serialization_expected_slice(quant_method, quant_method_kwargs, expected_slice, device)
def test_int_a16w8_cuda(self):
quant_method, quant_method_kwargs = "int8_weight_only", {}
expected_slice = np.array([0.3613, -0.127, -0.0223, -0.2539, -0.459, 0.4961, -0.1357, -0.6992, 0.4551])
device = "cuda"
self._test_original_model_expected_slice(quant_method, quant_method_kwargs, expected_slice)
self._check_serialization_expected_slice(quant_method, quant_method_kwargs, expected_slice, device)
def test_int_a8w8_cpu(self):
quant_method, quant_method_kwargs = "int8_dynamic_activation_int8_weight", {}
expected_slice = np.array([0.3633, -0.1357, -0.0188, -0.249, -0.4688, 0.5078, -0.1289, -0.6914, 0.4551])
device = "cpu"
self._test_original_model_expected_slice(quant_method, quant_method_kwargs, expected_slice)
self._check_serialization_expected_slice(quant_method, quant_method_kwargs, expected_slice, device)
def test_int_a16w8_cpu(self):
quant_method, quant_method_kwargs = "int8_weight_only", {}
expected_slice = np.array([0.3613, -0.127, -0.0223, -0.2539, -0.459, 0.4961, -0.1357, -0.6992, 0.4551])
device = "cpu"
self._test_original_model_expected_slice(quant_method, quant_method_kwargs, expected_slice)
self._check_serialization_expected_slice(quant_method, quant_method_kwargs, expected_slice, device)
# Slices for these tests have been obtained on our aws-g6e-xlarge-plus runners
@require_torch
@require_torch_gpu
@require_torchao_version_greater_or_equal("0.7.0")
@slow
@nightly
class SlowTorchAoTests(unittest.TestCase):
def tearDown(self):
gc.collect()
torch.cuda.empty_cache()
def get_dummy_components(self, quantization_config: TorchAoConfig):
# This is just for convenience, so that we can modify it at one place for custom environments and locally testing
cache_dir = None
model_id = "black-forest-labs/FLUX.1-dev"
transformer = FluxTransformer2DModel.from_pretrained(
model_id,
subfolder="transformer",
quantization_config=quantization_config,
torch_dtype=torch.bfloat16,
cache_dir=cache_dir,
)
text_encoder = CLIPTextModel.from_pretrained(
model_id, subfolder="text_encoder", torch_dtype=torch.bfloat16, cache_dir=cache_dir
)
text_encoder_2 = T5EncoderModel.from_pretrained(
model_id, subfolder="text_encoder_2", torch_dtype=torch.bfloat16, cache_dir=cache_dir
)
tokenizer = CLIPTokenizer.from_pretrained(model_id, subfolder="tokenizer", cache_dir=cache_dir)
tokenizer_2 = AutoTokenizer.from_pretrained(model_id, subfolder="tokenizer_2", cache_dir=cache_dir)
vae = AutoencoderKL.from_pretrained(model_id, subfolder="vae", torch_dtype=torch.bfloat16, cache_dir=cache_dir)
scheduler = FlowMatchEulerDiscreteScheduler()
return {
"scheduler": scheduler,
"text_encoder": text_encoder,
"text_encoder_2": text_encoder_2,
"tokenizer": tokenizer,
"tokenizer_2": tokenizer_2,
"transformer": transformer,
"vae": vae,
}
def get_dummy_inputs(self, device: torch.device, seed: int = 0):
if str(device).startswith("mps"):
generator = torch.manual_seed(seed)
else:
generator = torch.Generator().manual_seed(seed)
inputs = {
"prompt": "an astronaut riding a horse in space",
"height": 512,
"width": 512,
"num_inference_steps": 20,
"output_type": "np",
"generator": generator,
}
return inputs
def _test_quant_type(self, quantization_config, expected_slice):
components = self.get_dummy_components(quantization_config)
pipe = FluxPipeline(**components)
pipe.enable_model_cpu_offload()
weight = pipe.transformer.transformer_blocks[0].ff.net[2].weight
self.assertTrue(isinstance(weight, (AffineQuantizedTensor, LinearActivationQuantizedTensor)))
inputs = self.get_dummy_inputs(torch_device)
output = pipe(**inputs)[0].flatten()
output_slice = np.concatenate((output[:16], output[-16:]))
self.assertTrue(np.allclose(output_slice, expected_slice, atol=1e-3, rtol=1e-3))
def test_quantization(self):
# fmt: off
QUANTIZATION_TYPES_TO_TEST = [
("int8wo", np.array([0.0505, 0.0742, 0.1367, 0.0429, 0.0585, 0.1386, 0.0585, 0.0703, 0.1367, 0.0566, 0.0703, 0.1464, 0.0546, 0.0703, 0.1425, 0.0546, 0.3535, 0.7578, 0.5000, 0.4062, 0.7656, 0.5117, 0.4121, 0.7656, 0.5117, 0.3984, 0.7578, 0.5234, 0.4023, 0.7382, 0.5390, 0.4570])),
("int8dq", np.array([0.0546, 0.0761, 0.1386, 0.0488, 0.0644, 0.1425, 0.0605, 0.0742, 0.1406, 0.0625, 0.0722, 0.1523, 0.0625, 0.0742, 0.1503, 0.0605, 0.3886, 0.7968, 0.5507, 0.4492, 0.7890, 0.5351, 0.4316, 0.8007, 0.5390, 0.4179, 0.8281, 0.5820, 0.4531, 0.7812, 0.5703, 0.4921])),
]
if TorchAoConfig._is_cuda_capability_atleast_8_9():
QUANTIZATION_TYPES_TO_TEST.extend([
("float8wo_e4m3", np.array([0.0546, 0.0722, 0.1328, 0.0468, 0.0585, 0.1367, 0.0605, 0.0703, 0.1328, 0.0625, 0.0703, 0.1445, 0.0585, 0.0703, 0.1406, 0.0605, 0.3496, 0.7109, 0.4843, 0.4042, 0.7226, 0.5000, 0.4160, 0.7031, 0.4824, 0.3886, 0.6757, 0.4667, 0.3710, 0.6679, 0.4902, 0.4238])),
("fp5_e3m1", np.array([0.0527, 0.0762, 0.1309, 0.0449, 0.0645, 0.1328, 0.0566, 0.0723, 0.125, 0.0566, 0.0703, 0.1328, 0.0566, 0.0742, 0.1348, 0.0566, 0.3633, 0.7617, 0.5273, 0.4277, 0.7891, 0.5469, 0.4375, 0.8008, 0.5586, 0.4336, 0.7383, 0.5156, 0.3906, 0.6992, 0.5156, 0.4375])),
])
# fmt: on
for quantization_name, expected_slice in QUANTIZATION_TYPES_TO_TEST:
quantization_config = TorchAoConfig(quant_type=quantization_name, modules_to_not_convert=["x_embedder"])
self._test_quant_type(quantization_config, expected_slice)
gc.collect()
torch.cuda.empty_cache()
torch.cuda.synchronize()
def test_serialization_int8wo(self):
quantization_config = TorchAoConfig("int8wo")
components = self.get_dummy_components(quantization_config)
pipe = FluxPipeline(**components)
pipe.enable_model_cpu_offload()
weight = pipe.transformer.x_embedder.weight
self.assertTrue(isinstance(weight, AffineQuantizedTensor))
inputs = self.get_dummy_inputs(torch_device)
output = pipe(**inputs)[0].flatten()[:128]
with tempfile.TemporaryDirectory() as tmp_dir:
pipe.transformer.save_pretrained(tmp_dir, safe_serialization=False)
pipe.remove_all_hooks()
del pipe.transformer
gc.collect()
torch.cuda.empty_cache()
torch.cuda.synchronize()
transformer = FluxTransformer2DModel.from_pretrained(
tmp_dir, torch_dtype=torch.bfloat16, use_safetensors=False
)
pipe.transformer = transformer
pipe.enable_model_cpu_offload()
weight = transformer.x_embedder.weight
self.assertTrue(isinstance(weight, AffineQuantizedTensor))
loaded_output = pipe(**inputs)[0].flatten()[:128]
# Seems to require higher tolerance depending on which machine it is being run.
# A difference of 0.06 in normalized pixel space (-1 to 1), corresponds to a difference of
# 0.06 / 2 * 255 = 7.65 in pixel space (0 to 255). On our CI runners, the difference is about 0.04,
# on DGX it is 0.06, and on audace it is 0.037. So, we are using a tolerance of 0.06 here.
self.assertTrue(np.allclose(output, loaded_output, atol=0.06))
def test_memory_footprint_int4wo(self):
# The original checkpoints are in bf16 and about 24 GB
expected_memory_in_gb = 6.0
quantization_config = TorchAoConfig("int4wo")
cache_dir = None
transformer = FluxTransformer2DModel.from_pretrained(
"black-forest-labs/FLUX.1-dev",
subfolder="transformer",
quantization_config=quantization_config,
torch_dtype=torch.bfloat16,
cache_dir=cache_dir,
)
int4wo_memory_in_gb = get_model_size_in_bytes(transformer) / 1024**3
self.assertTrue(int4wo_memory_in_gb < expected_memory_in_gb)
def test_memory_footprint_int8wo(self):
# The original checkpoints are in bf16 and about 24 GB
expected_memory_in_gb = 12.0
quantization_config = TorchAoConfig("int8wo")
cache_dir = None
transformer = FluxTransformer2DModel.from_pretrained(
"black-forest-labs/FLUX.1-dev",
subfolder="transformer",
quantization_config=quantization_config,
torch_dtype=torch.bfloat16,
cache_dir=cache_dir,
)
int8wo_memory_in_gb = get_model_size_in_bytes(transformer) / 1024**3
self.assertTrue(int8wo_memory_in_gb < expected_memory_in_gb)
@require_torch
@require_torch_gpu
@require_torchao_version_greater_or_equal("0.7.0")
@slow
@nightly
class SlowTorchAoPreserializedModelTests(unittest.TestCase):
def tearDown(self):
gc.collect()
torch.cuda.empty_cache()
def get_dummy_inputs(self, device: torch.device, seed: int = 0):
if str(device).startswith("mps"):
generator = torch.manual_seed(seed)
else:
generator = torch.Generator().manual_seed(seed)
inputs = {
"prompt": "an astronaut riding a horse in space",
"height": 512,
"width": 512,
"num_inference_steps": 20,
"output_type": "np",
"generator": generator,
}
return inputs
def test_transformer_int8wo(self):
# fmt: off
expected_slice = np.array([0.0566, 0.0781, 0.1426, 0.0488, 0.0684, 0.1504, 0.0625, 0.0781, 0.1445, 0.0625, 0.0781, 0.1562, 0.0547, 0.0723, 0.1484, 0.0566, 0.5703, 0.8867, 0.7266, 0.5742, 0.875, 0.7148, 0.5586, 0.875, 0.7148, 0.5547, 0.8633, 0.7109, 0.5469, 0.8398, 0.6992, 0.5703])
# fmt: on
# This is just for convenience, so that we can modify it at one place for custom environments and locally testing
cache_dir = None
transformer = FluxTransformer2DModel.from_pretrained(
"hf-internal-testing/FLUX.1-Dev-TorchAO-int8wo-transformer",
torch_dtype=torch.bfloat16,
use_safetensors=False,
cache_dir=cache_dir,
)
pipe = FluxPipeline.from_pretrained(
"black-forest-labs/FLUX.1-dev", transformer=transformer, torch_dtype=torch.bfloat16, cache_dir=cache_dir
)
pipe.enable_model_cpu_offload()
# Verify that all linear layer weights are quantized
for name, module in pipe.transformer.named_modules():
if isinstance(module, nn.Linear):
self.assertTrue(isinstance(module.weight, AffineQuantizedTensor))
# Verify outputs match expected slice
inputs = self.get_dummy_inputs(torch_device)
output = pipe(**inputs)[0].flatten()
output_slice = np.concatenate((output[:16], output[-16:]))
self.assertTrue(np.allclose(output_slice, expected_slice, atol=1e-3, rtol=1e-3))
|