File size: 38,009 Bytes
a49cc2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
# coding=utf-8
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import gc
import tempfile
import unittest
from typing import List

import numpy as np
from transformers import AutoTokenizer, CLIPTextModel, CLIPTokenizer, T5EncoderModel

from diffusers import (
    AutoencoderKL,
    FlowMatchEulerDiscreteScheduler,
    FluxPipeline,
    FluxTransformer2DModel,
    TorchAoConfig,
)
from diffusers.models.attention_processor import Attention
from diffusers.utils.testing_utils import (
    enable_full_determinism,
    is_torch_available,
    is_torchao_available,
    nightly,
    require_torch,
    require_torch_gpu,
    require_torchao_version_greater_or_equal,
    slow,
    torch_device,
)


enable_full_determinism()


if is_torch_available():
    import torch
    import torch.nn as nn

    class LoRALayer(nn.Module):
        """Wraps a linear layer with LoRA-like adapter - Used for testing purposes only

        Taken from
        https://github.com/huggingface/transformers/blob/566302686a71de14125717dea9a6a45b24d42b37/tests/quantization/bnb/test_4bit.py#L62C5-L78C77
        """

        def __init__(self, module: nn.Module, rank: int):
            super().__init__()
            self.module = module
            self.adapter = nn.Sequential(
                nn.Linear(module.in_features, rank, bias=False),
                nn.Linear(rank, module.out_features, bias=False),
            )
            small_std = (2.0 / (5 * min(module.in_features, module.out_features))) ** 0.5
            nn.init.normal_(self.adapter[0].weight, std=small_std)
            nn.init.zeros_(self.adapter[1].weight)
            self.adapter.to(module.weight.device)

        def forward(self, input, *args, **kwargs):
            return self.module(input, *args, **kwargs) + self.adapter(input)


if is_torchao_available():
    from torchao.dtypes import AffineQuantizedTensor
    from torchao.quantization.linear_activation_quantized_tensor import LinearActivationQuantizedTensor
    from torchao.utils import get_model_size_in_bytes


@require_torch
@require_torch_gpu
@require_torchao_version_greater_or_equal("0.7.0")
class TorchAoConfigTest(unittest.TestCase):
    def test_to_dict(self):
        """
        Makes sure the config format is properly set
        """
        quantization_config = TorchAoConfig("int4_weight_only")
        torchao_orig_config = quantization_config.to_dict()

        for key in torchao_orig_config:
            self.assertEqual(getattr(quantization_config, key), torchao_orig_config[key])

    def test_post_init_check(self):
        """
        Test kwargs validations in TorchAoConfig
        """
        _ = TorchAoConfig("int4_weight_only")
        with self.assertRaisesRegex(ValueError, "is not supported yet"):
            _ = TorchAoConfig("uint8")

        with self.assertRaisesRegex(ValueError, "does not support the following keyword arguments"):
            _ = TorchAoConfig("int4_weight_only", group_size1=32)

    def test_repr(self):
        """
        Check that there is no error in the repr
        """
        quantization_config = TorchAoConfig("int4_weight_only", modules_to_not_convert=["conv"], group_size=8)
        expected_repr = """TorchAoConfig {
            "modules_to_not_convert": [
                "conv"
            ],
            "quant_method": "torchao",
            "quant_type": "int4_weight_only",
            "quant_type_kwargs": {
                "group_size": 8
            }
        }""".replace(" ", "").replace("\n", "")
        quantization_repr = repr(quantization_config).replace(" ", "").replace("\n", "")
        self.assertEqual(quantization_repr, expected_repr)


# Slices for these tests have been obtained on our aws-g6e-xlarge-plus runners
@require_torch
@require_torch_gpu
@require_torchao_version_greater_or_equal("0.7.0")
class TorchAoTest(unittest.TestCase):
    def tearDown(self):
        gc.collect()
        torch.cuda.empty_cache()

    def get_dummy_components(
        self, quantization_config: TorchAoConfig, model_id: str = "hf-internal-testing/tiny-flux-pipe"
    ):
        transformer = FluxTransformer2DModel.from_pretrained(
            model_id,
            subfolder="transformer",
            quantization_config=quantization_config,
            torch_dtype=torch.bfloat16,
        )
        text_encoder = CLIPTextModel.from_pretrained(model_id, subfolder="text_encoder", torch_dtype=torch.bfloat16)
        text_encoder_2 = T5EncoderModel.from_pretrained(
            model_id, subfolder="text_encoder_2", torch_dtype=torch.bfloat16
        )
        tokenizer = CLIPTokenizer.from_pretrained(model_id, subfolder="tokenizer")
        tokenizer_2 = AutoTokenizer.from_pretrained(model_id, subfolder="tokenizer_2")
        vae = AutoencoderKL.from_pretrained(model_id, subfolder="vae", torch_dtype=torch.bfloat16)
        scheduler = FlowMatchEulerDiscreteScheduler()

        return {
            "scheduler": scheduler,
            "text_encoder": text_encoder,
            "text_encoder_2": text_encoder_2,
            "tokenizer": tokenizer,
            "tokenizer_2": tokenizer_2,
            "transformer": transformer,
            "vae": vae,
        }

    def get_dummy_inputs(self, device: torch.device, seed: int = 0):
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator().manual_seed(seed)

        inputs = {
            "prompt": "an astronaut riding a horse in space",
            "height": 32,
            "width": 32,
            "num_inference_steps": 2,
            "output_type": "np",
            "generator": generator,
        }

        return inputs

    def get_dummy_tensor_inputs(self, device=None, seed: int = 0):
        batch_size = 1
        num_latent_channels = 4
        num_image_channels = 3
        height = width = 4
        sequence_length = 48
        embedding_dim = 32

        torch.manual_seed(seed)
        hidden_states = torch.randn((batch_size, height * width, num_latent_channels)).to(device, dtype=torch.bfloat16)

        torch.manual_seed(seed)
        encoder_hidden_states = torch.randn((batch_size, sequence_length, embedding_dim)).to(
            device, dtype=torch.bfloat16
        )

        torch.manual_seed(seed)
        pooled_prompt_embeds = torch.randn((batch_size, embedding_dim)).to(device, dtype=torch.bfloat16)

        torch.manual_seed(seed)
        text_ids = torch.randn((sequence_length, num_image_channels)).to(device, dtype=torch.bfloat16)

        torch.manual_seed(seed)
        image_ids = torch.randn((height * width, num_image_channels)).to(device, dtype=torch.bfloat16)

        timestep = torch.tensor([1.0]).to(device, dtype=torch.bfloat16).expand(batch_size)

        return {
            "hidden_states": hidden_states,
            "encoder_hidden_states": encoder_hidden_states,
            "pooled_projections": pooled_prompt_embeds,
            "txt_ids": text_ids,
            "img_ids": image_ids,
            "timestep": timestep,
        }

    def _test_quant_type(self, quantization_config: TorchAoConfig, expected_slice: List[float], model_id: str):
        components = self.get_dummy_components(quantization_config, model_id)
        pipe = FluxPipeline(**components)
        pipe.to(device=torch_device)

        inputs = self.get_dummy_inputs(torch_device)
        output = pipe(**inputs)[0]
        output_slice = output[-1, -1, -3:, -3:].flatten()

        self.assertTrue(np.allclose(output_slice, expected_slice, atol=1e-3, rtol=1e-3))

    def test_quantization(self):
        for model_id in ["hf-internal-testing/tiny-flux-pipe", "hf-internal-testing/tiny-flux-sharded"]:
            # fmt: off
            QUANTIZATION_TYPES_TO_TEST = [
                ("int4wo", np.array([0.4648, 0.5234, 0.5547, 0.4219, 0.4414, 0.6445, 0.4336, 0.4531, 0.5625])),
                ("int4dq", np.array([0.4688, 0.5195, 0.5547, 0.418, 0.4414, 0.6406, 0.4336, 0.4531, 0.5625])),
                ("int8wo", np.array([0.4648, 0.5195, 0.5547, 0.4199, 0.4414, 0.6445, 0.4316, 0.4531, 0.5625])),
                ("int8dq", np.array([0.4648, 0.5195, 0.5547, 0.4199, 0.4414, 0.6445, 0.4316, 0.4531, 0.5625])),
                ("uint4wo", np.array([0.4609, 0.5234, 0.5508, 0.4199, 0.4336, 0.6406, 0.4316, 0.4531, 0.5625])),
                ("uint7wo", np.array([0.4648, 0.5195, 0.5547, 0.4219, 0.4414, 0.6445, 0.4316, 0.4531, 0.5625])),
            ]

            if TorchAoConfig._is_cuda_capability_atleast_8_9():
                QUANTIZATION_TYPES_TO_TEST.extend([
                    ("float8wo_e5m2", np.array([0.4590, 0.5273, 0.5547, 0.4219, 0.4375, 0.6406, 0.4316, 0.4512, 0.5625])),
                    ("float8wo_e4m3", np.array([0.4648, 0.5234, 0.5547, 0.4219, 0.4414, 0.6406, 0.4316, 0.4531, 0.5625])),
                    # =====
                    # The following lead to an internal torch error:
                    #    RuntimeError: mat2 shape (32x4 must be divisible by 16
                    # Skip these for now; TODO(aryan): investigate later
                    # ("float8dq_e4m3", np.array([0, 0, 0, 0, 0, 0, 0, 0, 0])),
                    # ("float8dq_e4m3_tensor", np.array([0, 0, 0, 0, 0, 0, 0, 0, 0])),
                    # =====
                    # Cutlass fails to initialize for below
                    # ("float8dq_e4m3_row", np.array([0, 0, 0, 0, 0, 0, 0, 0, 0])),
                    # =====
                    ("fp4", np.array([0.4668, 0.5195, 0.5547, 0.4199, 0.4434, 0.6445, 0.4316, 0.4531, 0.5625])),
                    ("fp6", np.array([0.4668, 0.5195, 0.5547, 0.4199, 0.4434, 0.6445, 0.4316, 0.4531, 0.5625])),
                ])
            # fmt: on

            for quantization_name, expected_slice in QUANTIZATION_TYPES_TO_TEST:
                quant_kwargs = {}
                if quantization_name in ["uint4wo", "uint7wo"]:
                    # The dummy flux model that we use has smaller dimensions. This imposes some restrictions on group_size here
                    quant_kwargs.update({"group_size": 16})
                quantization_config = TorchAoConfig(
                    quant_type=quantization_name, modules_to_not_convert=["x_embedder"], **quant_kwargs
                )
                self._test_quant_type(quantization_config, expected_slice, model_id)

    def test_int4wo_quant_bfloat16_conversion(self):
        """
        Tests whether the dtype of model will be modified to bfloat16 for int4 weight-only quantization.
        """
        quantization_config = TorchAoConfig("int4_weight_only", group_size=64)
        quantized_model = FluxTransformer2DModel.from_pretrained(
            "hf-internal-testing/tiny-flux-pipe",
            subfolder="transformer",
            quantization_config=quantization_config,
            torch_dtype=torch.bfloat16,
        )

        weight = quantized_model.transformer_blocks[0].ff.net[2].weight
        self.assertTrue(isinstance(weight, AffineQuantizedTensor))
        self.assertEqual(weight.quant_min, 0)
        self.assertEqual(weight.quant_max, 15)

    def test_device_map(self):
        # Note: We were not checking if the weight tensor's were AffineQuantizedTensor's before. If we did
        # it would have errored out. Now, we do. So, device_map basically never worked with or without
        # sharded checkpoints. This will need to be supported in the future (TODO(aryan))
        """
        Test if the quantized model int4 weight-only is working properly with "auto" and custom device maps.
        The custom device map performs cpu/disk offloading as well. Also verifies that the device map is
        correctly set (in the `hf_device_map` attribute of the model).
        """
        custom_device_map_dict = {
            "time_text_embed": torch_device,
            "context_embedder": torch_device,
            "x_embedder": torch_device,
            "transformer_blocks.0": "cpu",
            "single_transformer_blocks.0": "disk",
            "norm_out": torch_device,
            "proj_out": "cpu",
        }
        device_maps = ["auto", custom_device_map_dict]

        # inputs = self.get_dummy_tensor_inputs(torch_device)
        # expected_slice = np.array([0.3457, -0.0366, 0.0105, -0.2275, -0.4941, 0.4395, -0.166, -0.6641, 0.4375])

        for device_map in device_maps:
            # device_map_to_compare = {"": 0} if device_map == "auto" else device_map

            # Test non-sharded model - should work
            with self.assertRaises(NotImplementedError):
                with tempfile.TemporaryDirectory() as offload_folder:
                    quantization_config = TorchAoConfig("int4_weight_only", group_size=64)
                    _ = FluxTransformer2DModel.from_pretrained(
                        "hf-internal-testing/tiny-flux-pipe",
                        subfolder="transformer",
                        quantization_config=quantization_config,
                        device_map=device_map,
                        torch_dtype=torch.bfloat16,
                        offload_folder=offload_folder,
                    )

                    # weight = quantized_model.transformer_blocks[0].ff.net[2].weight
                    # self.assertTrue(quantized_model.hf_device_map == device_map_to_compare)
                    # self.assertTrue(isinstance(weight, AffineQuantizedTensor))

                    # output = quantized_model(**inputs)[0]
                    # output_slice = output.flatten()[-9:].detach().float().cpu().numpy()
                    # self.assertTrue(np.allclose(output_slice, expected_slice, atol=1e-3, rtol=1e-3))

            # Test sharded model - should not work
            with self.assertRaises(NotImplementedError):
                with tempfile.TemporaryDirectory() as offload_folder:
                    quantization_config = TorchAoConfig("int4_weight_only", group_size=64)
                    _ = FluxTransformer2DModel.from_pretrained(
                        "hf-internal-testing/tiny-flux-sharded",
                        subfolder="transformer",
                        quantization_config=quantization_config,
                        device_map=device_map,
                        torch_dtype=torch.bfloat16,
                        offload_folder=offload_folder,
                    )

                    # weight = quantized_model.transformer_blocks[0].ff.net[2].weight
                    # self.assertTrue(quantized_model.hf_device_map == device_map_to_compare)
                    # self.assertTrue(isinstance(weight, AffineQuantizedTensor))

                    # output = quantized_model(**inputs)[0]
                    # output_slice = output.flatten()[-9:].detach().float().cpu().numpy()

                    # self.assertTrue(np.allclose(output_slice, expected_slice, atol=1e-3, rtol=1e-3))

    def test_modules_to_not_convert(self):
        quantization_config = TorchAoConfig("int8_weight_only", modules_to_not_convert=["transformer_blocks.0"])
        quantized_model_with_not_convert = FluxTransformer2DModel.from_pretrained(
            "hf-internal-testing/tiny-flux-pipe",
            subfolder="transformer",
            quantization_config=quantization_config,
            torch_dtype=torch.bfloat16,
        )

        unquantized_layer = quantized_model_with_not_convert.transformer_blocks[0].ff.net[2]
        self.assertTrue(isinstance(unquantized_layer, torch.nn.Linear))
        self.assertFalse(isinstance(unquantized_layer.weight, AffineQuantizedTensor))
        self.assertEqual(unquantized_layer.weight.dtype, torch.bfloat16)

        quantized_layer = quantized_model_with_not_convert.proj_out
        self.assertTrue(isinstance(quantized_layer.weight, AffineQuantizedTensor))

        quantization_config = TorchAoConfig("int8_weight_only")
        quantized_model = FluxTransformer2DModel.from_pretrained(
            "hf-internal-testing/tiny-flux-pipe",
            subfolder="transformer",
            quantization_config=quantization_config,
            torch_dtype=torch.bfloat16,
        )

        size_quantized_with_not_convert = get_model_size_in_bytes(quantized_model_with_not_convert)
        size_quantized = get_model_size_in_bytes(quantized_model)

        self.assertTrue(size_quantized < size_quantized_with_not_convert)

    def test_training(self):
        quantization_config = TorchAoConfig("int8_weight_only")
        quantized_model = FluxTransformer2DModel.from_pretrained(
            "hf-internal-testing/tiny-flux-pipe",
            subfolder="transformer",
            quantization_config=quantization_config,
            torch_dtype=torch.bfloat16,
        ).to(torch_device)

        for param in quantized_model.parameters():
            # freeze the model as only adapter layers will be trained
            param.requires_grad = False
            if param.ndim == 1:
                param.data = param.data.to(torch.float32)

        for _, module in quantized_model.named_modules():
            if isinstance(module, Attention):
                module.to_q = LoRALayer(module.to_q, rank=4)
                module.to_k = LoRALayer(module.to_k, rank=4)
                module.to_v = LoRALayer(module.to_v, rank=4)

        with torch.amp.autocast(str(torch_device), dtype=torch.bfloat16):
            inputs = self.get_dummy_tensor_inputs(torch_device)
            output = quantized_model(**inputs)[0]
            output.norm().backward()

        for module in quantized_model.modules():
            if isinstance(module, LoRALayer):
                self.assertTrue(module.adapter[1].weight.grad is not None)
                self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0)

    @nightly
    def test_torch_compile(self):
        r"""Test that verifies if torch.compile works with torchao quantization."""
        for model_id in ["hf-internal-testing/tiny-flux-pipe", "hf-internal-testing/tiny-flux-sharded"]:
            quantization_config = TorchAoConfig("int8_weight_only")
            components = self.get_dummy_components(quantization_config, model_id=model_id)
            pipe = FluxPipeline(**components)
            pipe.to(device=torch_device)

            inputs = self.get_dummy_inputs(torch_device)
            normal_output = pipe(**inputs)[0].flatten()[-32:]

            pipe.transformer = torch.compile(pipe.transformer, mode="max-autotune", fullgraph=True, dynamic=False)
            inputs = self.get_dummy_inputs(torch_device)
            compile_output = pipe(**inputs)[0].flatten()[-32:]

            # Note: Seems to require higher tolerance
            self.assertTrue(np.allclose(normal_output, compile_output, atol=1e-2, rtol=1e-3))

    def test_memory_footprint(self):
        r"""
        A simple test to check if the model conversion has been done correctly by checking on the
        memory footprint of the converted model and the class type of the linear layers of the converted models
        """
        for model_id in ["hf-internal-testing/tiny-flux-pipe", "hf-internal-testing/tiny-flux-sharded"]:
            transformer_int4wo = self.get_dummy_components(TorchAoConfig("int4wo"), model_id=model_id)["transformer"]
            transformer_int4wo_gs32 = self.get_dummy_components(
                TorchAoConfig("int4wo", group_size=32), model_id=model_id
            )["transformer"]
            transformer_int8wo = self.get_dummy_components(TorchAoConfig("int8wo"), model_id=model_id)["transformer"]
            transformer_bf16 = self.get_dummy_components(None, model_id=model_id)["transformer"]

            # Will not quantized all the layers by default due to the model weights shapes not being divisible by group_size=64
            for block in transformer_int4wo.transformer_blocks:
                self.assertTrue(isinstance(block.ff.net[2].weight, AffineQuantizedTensor))
                self.assertTrue(isinstance(block.ff_context.net[2].weight, AffineQuantizedTensor))

            # Will quantize all the linear layers except x_embedder
            for name, module in transformer_int4wo_gs32.named_modules():
                if isinstance(module, nn.Linear) and name not in ["x_embedder"]:
                    self.assertTrue(isinstance(module.weight, AffineQuantizedTensor))

            # Will quantize all the linear layers
            for module in transformer_int8wo.modules():
                if isinstance(module, nn.Linear):
                    self.assertTrue(isinstance(module.weight, AffineQuantizedTensor))

            total_int4wo = get_model_size_in_bytes(transformer_int4wo)
            total_int4wo_gs32 = get_model_size_in_bytes(transformer_int4wo_gs32)
            total_int8wo = get_model_size_in_bytes(transformer_int8wo)
            total_bf16 = get_model_size_in_bytes(transformer_bf16)

            # TODO: refactor to align with other quantization tests
            # Latter has smaller group size, so more groups -> more scales and zero points
            self.assertTrue(total_int4wo < total_int4wo_gs32)
            # int8 quantizes more layers compare to int4 with default group size
            self.assertTrue(total_int8wo < total_int4wo)
            # int4wo does not quantize too many layers because of default group size, but for the layers it does
            # there is additional overhead of scales and zero points
            self.assertTrue(total_bf16 < total_int4wo)

    def test_wrong_config(self):
        with self.assertRaises(ValueError):
            self.get_dummy_components(TorchAoConfig("int42"))

    def test_sequential_cpu_offload(self):
        r"""
        A test that checks if inference runs as expected when sequential cpu offloading is enabled.
        """
        quantization_config = TorchAoConfig("int8wo")
        components = self.get_dummy_components(quantization_config)
        pipe = FluxPipeline(**components)
        pipe.enable_sequential_cpu_offload()

        inputs = self.get_dummy_inputs(torch_device)
        _ = pipe(**inputs)


# Slices for these tests have been obtained on our aws-g6e-xlarge-plus runners
@require_torch
@require_torch_gpu
@require_torchao_version_greater_or_equal("0.7.0")
class TorchAoSerializationTest(unittest.TestCase):
    model_name = "hf-internal-testing/tiny-flux-pipe"

    def tearDown(self):
        gc.collect()
        torch.cuda.empty_cache()

    def get_dummy_model(self, quant_method, quant_method_kwargs, device=None):
        quantization_config = TorchAoConfig(quant_method, **quant_method_kwargs)
        quantized_model = FluxTransformer2DModel.from_pretrained(
            self.model_name,
            subfolder="transformer",
            quantization_config=quantization_config,
            torch_dtype=torch.bfloat16,
        )
        return quantized_model.to(device)

    def get_dummy_tensor_inputs(self, device=None, seed: int = 0):
        batch_size = 1
        num_latent_channels = 4
        num_image_channels = 3
        height = width = 4
        sequence_length = 48
        embedding_dim = 32

        torch.manual_seed(seed)
        hidden_states = torch.randn((batch_size, height * width, num_latent_channels)).to(device, dtype=torch.bfloat16)
        encoder_hidden_states = torch.randn((batch_size, sequence_length, embedding_dim)).to(
            device, dtype=torch.bfloat16
        )
        pooled_prompt_embeds = torch.randn((batch_size, embedding_dim)).to(device, dtype=torch.bfloat16)
        text_ids = torch.randn((sequence_length, num_image_channels)).to(device, dtype=torch.bfloat16)
        image_ids = torch.randn((height * width, num_image_channels)).to(device, dtype=torch.bfloat16)
        timestep = torch.tensor([1.0]).to(device, dtype=torch.bfloat16).expand(batch_size)

        return {
            "hidden_states": hidden_states,
            "encoder_hidden_states": encoder_hidden_states,
            "pooled_projections": pooled_prompt_embeds,
            "txt_ids": text_ids,
            "img_ids": image_ids,
            "timestep": timestep,
        }

    def _test_original_model_expected_slice(self, quant_method, quant_method_kwargs, expected_slice):
        quantized_model = self.get_dummy_model(quant_method, quant_method_kwargs, torch_device)
        inputs = self.get_dummy_tensor_inputs(torch_device)
        output = quantized_model(**inputs)[0]
        output_slice = output.flatten()[-9:].detach().float().cpu().numpy()
        weight = quantized_model.transformer_blocks[0].ff.net[2].weight
        self.assertTrue(isinstance(weight, (AffineQuantizedTensor, LinearActivationQuantizedTensor)))
        self.assertTrue(np.allclose(output_slice, expected_slice, atol=1e-3, rtol=1e-3))

    def _check_serialization_expected_slice(self, quant_method, quant_method_kwargs, expected_slice, device):
        quantized_model = self.get_dummy_model(quant_method, quant_method_kwargs, device)

        with tempfile.TemporaryDirectory() as tmp_dir:
            quantized_model.save_pretrained(tmp_dir, safe_serialization=False)
            loaded_quantized_model = FluxTransformer2DModel.from_pretrained(
                tmp_dir, torch_dtype=torch.bfloat16, use_safetensors=False
            ).to(device=torch_device)

        inputs = self.get_dummy_tensor_inputs(torch_device)
        output = loaded_quantized_model(**inputs)[0]

        output_slice = output.flatten()[-9:].detach().float().cpu().numpy()
        self.assertTrue(
            isinstance(
                loaded_quantized_model.proj_out.weight, (AffineQuantizedTensor, LinearActivationQuantizedTensor)
            )
        )
        self.assertTrue(np.allclose(output_slice, expected_slice, atol=1e-3, rtol=1e-3))

    def test_int_a8w8_cuda(self):
        quant_method, quant_method_kwargs = "int8_dynamic_activation_int8_weight", {}
        expected_slice = np.array([0.3633, -0.1357, -0.0188, -0.249, -0.4688, 0.5078, -0.1289, -0.6914, 0.4551])
        device = "cuda"
        self._test_original_model_expected_slice(quant_method, quant_method_kwargs, expected_slice)
        self._check_serialization_expected_slice(quant_method, quant_method_kwargs, expected_slice, device)

    def test_int_a16w8_cuda(self):
        quant_method, quant_method_kwargs = "int8_weight_only", {}
        expected_slice = np.array([0.3613, -0.127, -0.0223, -0.2539, -0.459, 0.4961, -0.1357, -0.6992, 0.4551])
        device = "cuda"
        self._test_original_model_expected_slice(quant_method, quant_method_kwargs, expected_slice)
        self._check_serialization_expected_slice(quant_method, quant_method_kwargs, expected_slice, device)

    def test_int_a8w8_cpu(self):
        quant_method, quant_method_kwargs = "int8_dynamic_activation_int8_weight", {}
        expected_slice = np.array([0.3633, -0.1357, -0.0188, -0.249, -0.4688, 0.5078, -0.1289, -0.6914, 0.4551])
        device = "cpu"
        self._test_original_model_expected_slice(quant_method, quant_method_kwargs, expected_slice)
        self._check_serialization_expected_slice(quant_method, quant_method_kwargs, expected_slice, device)

    def test_int_a16w8_cpu(self):
        quant_method, quant_method_kwargs = "int8_weight_only", {}
        expected_slice = np.array([0.3613, -0.127, -0.0223, -0.2539, -0.459, 0.4961, -0.1357, -0.6992, 0.4551])
        device = "cpu"
        self._test_original_model_expected_slice(quant_method, quant_method_kwargs, expected_slice)
        self._check_serialization_expected_slice(quant_method, quant_method_kwargs, expected_slice, device)


# Slices for these tests have been obtained on our aws-g6e-xlarge-plus runners
@require_torch
@require_torch_gpu
@require_torchao_version_greater_or_equal("0.7.0")
@slow
@nightly
class SlowTorchAoTests(unittest.TestCase):
    def tearDown(self):
        gc.collect()
        torch.cuda.empty_cache()

    def get_dummy_components(self, quantization_config: TorchAoConfig):
        # This is just for convenience, so that we can modify it at one place for custom environments and locally testing
        cache_dir = None
        model_id = "black-forest-labs/FLUX.1-dev"
        transformer = FluxTransformer2DModel.from_pretrained(
            model_id,
            subfolder="transformer",
            quantization_config=quantization_config,
            torch_dtype=torch.bfloat16,
            cache_dir=cache_dir,
        )
        text_encoder = CLIPTextModel.from_pretrained(
            model_id, subfolder="text_encoder", torch_dtype=torch.bfloat16, cache_dir=cache_dir
        )
        text_encoder_2 = T5EncoderModel.from_pretrained(
            model_id, subfolder="text_encoder_2", torch_dtype=torch.bfloat16, cache_dir=cache_dir
        )
        tokenizer = CLIPTokenizer.from_pretrained(model_id, subfolder="tokenizer", cache_dir=cache_dir)
        tokenizer_2 = AutoTokenizer.from_pretrained(model_id, subfolder="tokenizer_2", cache_dir=cache_dir)
        vae = AutoencoderKL.from_pretrained(model_id, subfolder="vae", torch_dtype=torch.bfloat16, cache_dir=cache_dir)
        scheduler = FlowMatchEulerDiscreteScheduler()

        return {
            "scheduler": scheduler,
            "text_encoder": text_encoder,
            "text_encoder_2": text_encoder_2,
            "tokenizer": tokenizer,
            "tokenizer_2": tokenizer_2,
            "transformer": transformer,
            "vae": vae,
        }

    def get_dummy_inputs(self, device: torch.device, seed: int = 0):
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator().manual_seed(seed)

        inputs = {
            "prompt": "an astronaut riding a horse in space",
            "height": 512,
            "width": 512,
            "num_inference_steps": 20,
            "output_type": "np",
            "generator": generator,
        }

        return inputs

    def _test_quant_type(self, quantization_config, expected_slice):
        components = self.get_dummy_components(quantization_config)
        pipe = FluxPipeline(**components)
        pipe.enable_model_cpu_offload()

        weight = pipe.transformer.transformer_blocks[0].ff.net[2].weight
        self.assertTrue(isinstance(weight, (AffineQuantizedTensor, LinearActivationQuantizedTensor)))

        inputs = self.get_dummy_inputs(torch_device)
        output = pipe(**inputs)[0].flatten()
        output_slice = np.concatenate((output[:16], output[-16:]))
        self.assertTrue(np.allclose(output_slice, expected_slice, atol=1e-3, rtol=1e-3))

    def test_quantization(self):
        # fmt: off
        QUANTIZATION_TYPES_TO_TEST = [
            ("int8wo", np.array([0.0505, 0.0742, 0.1367, 0.0429, 0.0585, 0.1386, 0.0585, 0.0703, 0.1367, 0.0566, 0.0703, 0.1464, 0.0546, 0.0703, 0.1425, 0.0546, 0.3535, 0.7578, 0.5000, 0.4062, 0.7656, 0.5117, 0.4121, 0.7656, 0.5117, 0.3984, 0.7578, 0.5234, 0.4023, 0.7382, 0.5390, 0.4570])),
            ("int8dq", np.array([0.0546, 0.0761, 0.1386, 0.0488, 0.0644, 0.1425, 0.0605, 0.0742, 0.1406, 0.0625, 0.0722, 0.1523, 0.0625, 0.0742, 0.1503, 0.0605, 0.3886, 0.7968, 0.5507, 0.4492, 0.7890, 0.5351, 0.4316, 0.8007, 0.5390, 0.4179, 0.8281, 0.5820, 0.4531, 0.7812, 0.5703, 0.4921])),
        ]

        if TorchAoConfig._is_cuda_capability_atleast_8_9():
            QUANTIZATION_TYPES_TO_TEST.extend([
                ("float8wo_e4m3", np.array([0.0546, 0.0722, 0.1328, 0.0468, 0.0585, 0.1367, 0.0605, 0.0703, 0.1328, 0.0625, 0.0703, 0.1445, 0.0585, 0.0703, 0.1406, 0.0605, 0.3496, 0.7109, 0.4843, 0.4042, 0.7226, 0.5000, 0.4160, 0.7031, 0.4824, 0.3886, 0.6757, 0.4667, 0.3710, 0.6679, 0.4902, 0.4238])),
                ("fp5_e3m1", np.array([0.0527, 0.0762, 0.1309, 0.0449, 0.0645, 0.1328, 0.0566, 0.0723, 0.125, 0.0566, 0.0703, 0.1328, 0.0566, 0.0742, 0.1348, 0.0566, 0.3633, 0.7617, 0.5273, 0.4277, 0.7891, 0.5469, 0.4375, 0.8008, 0.5586, 0.4336, 0.7383, 0.5156, 0.3906, 0.6992, 0.5156, 0.4375])),
            ])
        # fmt: on

        for quantization_name, expected_slice in QUANTIZATION_TYPES_TO_TEST:
            quantization_config = TorchAoConfig(quant_type=quantization_name, modules_to_not_convert=["x_embedder"])
            self._test_quant_type(quantization_config, expected_slice)
            gc.collect()
            torch.cuda.empty_cache()
            torch.cuda.synchronize()

    def test_serialization_int8wo(self):
        quantization_config = TorchAoConfig("int8wo")
        components = self.get_dummy_components(quantization_config)
        pipe = FluxPipeline(**components)
        pipe.enable_model_cpu_offload()

        weight = pipe.transformer.x_embedder.weight
        self.assertTrue(isinstance(weight, AffineQuantizedTensor))

        inputs = self.get_dummy_inputs(torch_device)
        output = pipe(**inputs)[0].flatten()[:128]

        with tempfile.TemporaryDirectory() as tmp_dir:
            pipe.transformer.save_pretrained(tmp_dir, safe_serialization=False)
            pipe.remove_all_hooks()
            del pipe.transformer
            gc.collect()
            torch.cuda.empty_cache()
            torch.cuda.synchronize()
            transformer = FluxTransformer2DModel.from_pretrained(
                tmp_dir, torch_dtype=torch.bfloat16, use_safetensors=False
            )
            pipe.transformer = transformer
            pipe.enable_model_cpu_offload()

        weight = transformer.x_embedder.weight
        self.assertTrue(isinstance(weight, AffineQuantizedTensor))

        loaded_output = pipe(**inputs)[0].flatten()[:128]
        # Seems to require higher tolerance depending on which machine it is being run.
        # A difference of 0.06 in normalized pixel space (-1 to 1), corresponds to a difference of
        # 0.06 / 2 * 255 = 7.65 in pixel space (0 to 255). On our CI runners, the difference is about 0.04,
        # on DGX it is 0.06, and on audace it is 0.037. So, we are using a tolerance of 0.06 here.
        self.assertTrue(np.allclose(output, loaded_output, atol=0.06))

    def test_memory_footprint_int4wo(self):
        # The original checkpoints are in bf16 and about 24 GB
        expected_memory_in_gb = 6.0
        quantization_config = TorchAoConfig("int4wo")
        cache_dir = None
        transformer = FluxTransformer2DModel.from_pretrained(
            "black-forest-labs/FLUX.1-dev",
            subfolder="transformer",
            quantization_config=quantization_config,
            torch_dtype=torch.bfloat16,
            cache_dir=cache_dir,
        )
        int4wo_memory_in_gb = get_model_size_in_bytes(transformer) / 1024**3
        self.assertTrue(int4wo_memory_in_gb < expected_memory_in_gb)

    def test_memory_footprint_int8wo(self):
        # The original checkpoints are in bf16 and about 24 GB
        expected_memory_in_gb = 12.0
        quantization_config = TorchAoConfig("int8wo")
        cache_dir = None
        transformer = FluxTransformer2DModel.from_pretrained(
            "black-forest-labs/FLUX.1-dev",
            subfolder="transformer",
            quantization_config=quantization_config,
            torch_dtype=torch.bfloat16,
            cache_dir=cache_dir,
        )
        int8wo_memory_in_gb = get_model_size_in_bytes(transformer) / 1024**3
        self.assertTrue(int8wo_memory_in_gb < expected_memory_in_gb)


@require_torch
@require_torch_gpu
@require_torchao_version_greater_or_equal("0.7.0")
@slow
@nightly
class SlowTorchAoPreserializedModelTests(unittest.TestCase):
    def tearDown(self):
        gc.collect()
        torch.cuda.empty_cache()

    def get_dummy_inputs(self, device: torch.device, seed: int = 0):
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator().manual_seed(seed)

        inputs = {
            "prompt": "an astronaut riding a horse in space",
            "height": 512,
            "width": 512,
            "num_inference_steps": 20,
            "output_type": "np",
            "generator": generator,
        }

        return inputs

    def test_transformer_int8wo(self):
        # fmt: off
        expected_slice = np.array([0.0566, 0.0781, 0.1426, 0.0488, 0.0684, 0.1504, 0.0625, 0.0781, 0.1445, 0.0625, 0.0781, 0.1562, 0.0547, 0.0723, 0.1484, 0.0566, 0.5703, 0.8867, 0.7266, 0.5742, 0.875, 0.7148, 0.5586, 0.875, 0.7148, 0.5547, 0.8633, 0.7109, 0.5469, 0.8398, 0.6992, 0.5703])
        # fmt: on

        # This is just for convenience, so that we can modify it at one place for custom environments and locally testing
        cache_dir = None
        transformer = FluxTransformer2DModel.from_pretrained(
            "hf-internal-testing/FLUX.1-Dev-TorchAO-int8wo-transformer",
            torch_dtype=torch.bfloat16,
            use_safetensors=False,
            cache_dir=cache_dir,
        )
        pipe = FluxPipeline.from_pretrained(
            "black-forest-labs/FLUX.1-dev", transformer=transformer, torch_dtype=torch.bfloat16, cache_dir=cache_dir
        )
        pipe.enable_model_cpu_offload()

        # Verify that all linear layer weights are quantized
        for name, module in pipe.transformer.named_modules():
            if isinstance(module, nn.Linear):
                self.assertTrue(isinstance(module.weight, AffineQuantizedTensor))

        # Verify outputs match expected slice
        inputs = self.get_dummy_inputs(torch_device)
        output = pipe(**inputs)[0].flatten()
        output_slice = np.concatenate((output[:16], output[-16:]))
        self.assertTrue(np.allclose(output_slice, expected_slice, atol=1e-3, rtol=1e-3))