File size: 6,077 Bytes
a49cc2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import gc
import tempfile
import unittest

import torch

from diffusers import EulerDiscreteScheduler, StableDiffusionInstructPix2PixPipeline, StableDiffusionPipeline
from diffusers.loaders.single_file_utils import _extract_repo_id_and_weights_name
from diffusers.utils import load_image
from diffusers.utils.testing_utils import (
    backend_empty_cache,
    enable_full_determinism,
    nightly,
    require_torch_accelerator,
    slow,
    torch_device,
)

from .single_file_testing_utils import (
    SDSingleFileTesterMixin,
    download_original_config,
    download_single_file_checkpoint,
)


enable_full_determinism()


@slow
@require_torch_accelerator
class StableDiffusionPipelineSingleFileSlowTests(unittest.TestCase, SDSingleFileTesterMixin):
    pipeline_class = StableDiffusionPipeline
    ckpt_path = (
        "https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5/blob/main/v1-5-pruned-emaonly.safetensors"
    )
    original_config = (
        "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml"
    )
    repo_id = "stable-diffusion-v1-5/stable-diffusion-v1-5"

    def setUp(self):
        super().setUp()
        gc.collect()
        backend_empty_cache(torch_device)

    def tearDown(self):
        super().tearDown()
        gc.collect()
        backend_empty_cache(torch_device)

    def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0):
        generator = torch.Generator(device=generator_device).manual_seed(seed)
        inputs = {
            "prompt": "a fantasy landscape, concept art, high resolution",
            "generator": generator,
            "num_inference_steps": 2,
            "strength": 0.75,
            "guidance_scale": 7.5,
            "output_type": "np",
        }
        return inputs

    def test_single_file_format_inference_is_same_as_pretrained(self):
        super().test_single_file_format_inference_is_same_as_pretrained(expected_max_diff=1e-3)

    def test_single_file_legacy_scheduler_loading(self):
        with tempfile.TemporaryDirectory() as tmpdir:
            repo_id, weight_name = _extract_repo_id_and_weights_name(self.ckpt_path)
            local_ckpt_path = download_single_file_checkpoint(repo_id, weight_name, tmpdir)
            local_original_config = download_original_config(self.original_config, tmpdir)

            pipe = self.pipeline_class.from_single_file(
                local_ckpt_path,
                original_config=local_original_config,
                cache_dir=tmpdir,
                local_files_only=True,
                scheduler_type="euler",
            )

        # Default is PNDM for this checkpoint
        assert isinstance(pipe.scheduler, EulerDiscreteScheduler)

    def test_single_file_legacy_scaling_factor(self):
        new_scaling_factor = 10.0
        init_pipe = self.pipeline_class.from_single_file(self.ckpt_path)
        pipe = self.pipeline_class.from_single_file(self.ckpt_path, scaling_factor=new_scaling_factor)

        assert init_pipe.vae.config.scaling_factor != new_scaling_factor
        assert pipe.vae.config.scaling_factor == new_scaling_factor


@slow
class StableDiffusion21PipelineSingleFileSlowTests(unittest.TestCase, SDSingleFileTesterMixin):
    pipeline_class = StableDiffusionPipeline
    ckpt_path = "https://huggingface.co/stabilityai/stable-diffusion-2-1/blob/main/v2-1_768-ema-pruned.safetensors"
    original_config = "https://raw.githubusercontent.com/Stability-AI/stablediffusion/main/configs/stable-diffusion/v2-inference-v.yaml"
    repo_id = "stabilityai/stable-diffusion-2-1"

    def setUp(self):
        super().setUp()
        gc.collect()
        backend_empty_cache(torch_device)

    def tearDown(self):
        super().tearDown()
        gc.collect()
        backend_empty_cache(torch_device)

    def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0):
        generator = torch.Generator(device=generator_device).manual_seed(seed)
        inputs = {
            "prompt": "a fantasy landscape, concept art, high resolution",
            "generator": generator,
            "num_inference_steps": 2,
            "strength": 0.75,
            "guidance_scale": 7.5,
            "output_type": "np",
        }
        return inputs

    def test_single_file_format_inference_is_same_as_pretrained(self):
        super().test_single_file_format_inference_is_same_as_pretrained(expected_max_diff=1e-3)


@nightly
@slow
@require_torch_accelerator
class StableDiffusionInstructPix2PixPipelineSingleFileSlowTests(unittest.TestCase, SDSingleFileTesterMixin):
    pipeline_class = StableDiffusionInstructPix2PixPipeline
    ckpt_path = "https://huggingface.co/timbrooks/instruct-pix2pix/blob/main/instruct-pix2pix-00-22000.safetensors"
    original_config = (
        "https://raw.githubusercontent.com/timothybrooks/instruct-pix2pix/refs/heads/main/configs/generate.yaml"
    )
    repo_id = "timbrooks/instruct-pix2pix"
    single_file_kwargs = {"extract_ema": True}

    def setUp(self):
        super().setUp()
        gc.collect()
        backend_empty_cache(torch_device)

    def tearDown(self):
        super().tearDown()
        gc.collect()
        backend_empty_cache(torch_device)

    def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0):
        generator = torch.Generator(device=generator_device).manual_seed(seed)
        image = load_image(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/stable_diffusion_pix2pix/example.jpg"
        )
        inputs = {
            "prompt": "turn him into a cyborg",
            "image": image,
            "generator": generator,
            "num_inference_steps": 3,
            "guidance_scale": 7.5,
            "image_guidance_scale": 1.0,
            "output_type": "np",
        }
        return inputs

    def test_single_file_format_inference_is_same_as_pretrained(self):
        super().test_single_file_format_inference_is_same_as_pretrained(expected_max_diff=1e-3)