Spaces:
Running
on
Zero
Running
on
Zero
# Copyright 2024 The HuggingFace Team. | |
# All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import argparse | |
import logging | |
import math | |
import os | |
import shutil | |
from pathlib import Path | |
from typing import List, Optional, Tuple, Union | |
import numpy as np | |
import torch | |
import torchvision.transforms as TT | |
import transformers | |
from accelerate import Accelerator, DistributedType | |
from accelerate.logging import get_logger | |
from accelerate.utils import DistributedDataParallelKwargs, ProjectConfiguration, set_seed | |
from huggingface_hub import create_repo, upload_folder | |
from peft import LoraConfig, get_peft_model_state_dict, set_peft_model_state_dict | |
from torch.utils.data import DataLoader, Dataset | |
from torchvision.transforms import InterpolationMode | |
from torchvision.transforms.functional import resize | |
from tqdm.auto import tqdm | |
from transformers import AutoTokenizer, T5EncoderModel, T5Tokenizer | |
import diffusers | |
from diffusers import AutoencoderKLCogVideoX, CogVideoXDPMScheduler, CogVideoXPipeline, CogVideoXTransformer3DModel | |
from diffusers.image_processor import VaeImageProcessor | |
from diffusers.models.embeddings import get_3d_rotary_pos_embed | |
from diffusers.optimization import get_scheduler | |
from diffusers.pipelines.cogvideo.pipeline_cogvideox import get_resize_crop_region_for_grid | |
from diffusers.training_utils import cast_training_params, free_memory | |
from diffusers.utils import check_min_version, convert_unet_state_dict_to_peft, export_to_video, is_wandb_available | |
from diffusers.utils.hub_utils import load_or_create_model_card, populate_model_card | |
from diffusers.utils.torch_utils import is_compiled_module | |
if is_wandb_available(): | |
import wandb | |
# Will error if the minimal version of diffusers is not installed. Remove at your own risks. | |
check_min_version("0.33.0.dev0") | |
logger = get_logger(__name__) | |
def get_args(): | |
parser = argparse.ArgumentParser(description="Simple example of a training script for CogVideoX.") | |
# Model information | |
parser.add_argument( | |
"--pretrained_model_name_or_path", | |
type=str, | |
default=None, | |
required=True, | |
help="Path to pretrained model or model identifier from huggingface.co/models.", | |
) | |
parser.add_argument( | |
"--revision", | |
type=str, | |
default=None, | |
required=False, | |
help="Revision of pretrained model identifier from huggingface.co/models.", | |
) | |
parser.add_argument( | |
"--variant", | |
type=str, | |
default=None, | |
help="Variant of the model files of the pretrained model identifier from huggingface.co/models, 'e.g.' fp16", | |
) | |
parser.add_argument( | |
"--cache_dir", | |
type=str, | |
default=None, | |
help="The directory where the downloaded models and datasets will be stored.", | |
) | |
# Dataset information | |
parser.add_argument( | |
"--dataset_name", | |
type=str, | |
default=None, | |
help=( | |
"The name of the Dataset (from the HuggingFace hub) containing the training data of instance images (could be your own, possibly private," | |
" dataset). It can also be a path pointing to a local copy of a dataset in your filesystem," | |
" or to a folder containing files that 🤗 Datasets can understand." | |
), | |
) | |
parser.add_argument( | |
"--dataset_config_name", | |
type=str, | |
default=None, | |
help="The config of the Dataset, leave as None if there's only one config.", | |
) | |
parser.add_argument( | |
"--instance_data_root", | |
type=str, | |
default=None, | |
help=("A folder containing the training data."), | |
) | |
parser.add_argument( | |
"--video_column", | |
type=str, | |
default="video", | |
help="The column of the dataset containing videos. Or, the name of the file in `--instance_data_root` folder containing the line-separated path to video data.", | |
) | |
parser.add_argument( | |
"--caption_column", | |
type=str, | |
default="text", | |
help="The column of the dataset containing the instance prompt for each video. Or, the name of the file in `--instance_data_root` folder containing the line-separated instance prompts.", | |
) | |
parser.add_argument( | |
"--id_token", type=str, default=None, help="Identifier token appended to the start of each prompt if provided." | |
) | |
parser.add_argument( | |
"--dataloader_num_workers", | |
type=int, | |
default=0, | |
help=( | |
"Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process." | |
), | |
) | |
# Validation | |
parser.add_argument( | |
"--validation_prompt", | |
type=str, | |
default=None, | |
help="One or more prompt(s) that is used during validation to verify that the model is learning. Multiple validation prompts should be separated by the '--validation_prompt_seperator' string.", | |
) | |
parser.add_argument( | |
"--validation_prompt_separator", | |
type=str, | |
default=":::", | |
help="String that separates multiple validation prompts", | |
) | |
parser.add_argument( | |
"--num_validation_videos", | |
type=int, | |
default=1, | |
help="Number of videos that should be generated during validation per `validation_prompt`.", | |
) | |
parser.add_argument( | |
"--validation_epochs", | |
type=int, | |
default=50, | |
help=( | |
"Run validation every X epochs. Validation consists of running the prompt `args.validation_prompt` multiple times: `args.num_validation_videos`." | |
), | |
) | |
parser.add_argument( | |
"--guidance_scale", | |
type=float, | |
default=6, | |
help="The guidance scale to use while sampling validation videos.", | |
) | |
parser.add_argument( | |
"--use_dynamic_cfg", | |
action="store_true", | |
default=False, | |
help="Whether or not to use the default cosine dynamic guidance schedule when sampling validation videos.", | |
) | |
# Training information | |
parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.") | |
parser.add_argument( | |
"--rank", | |
type=int, | |
default=128, | |
help=("The dimension of the LoRA update matrices."), | |
) | |
parser.add_argument( | |
"--lora_alpha", | |
type=float, | |
default=128, | |
help=("The scaling factor to scale LoRA weight update. The actual scaling factor is `lora_alpha / rank`"), | |
) | |
parser.add_argument( | |
"--mixed_precision", | |
type=str, | |
default=None, | |
choices=["no", "fp16", "bf16"], | |
help=( | |
"Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >=" | |
" 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the" | |
" flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config." | |
), | |
) | |
parser.add_argument( | |
"--output_dir", | |
type=str, | |
default="cogvideox-lora", | |
help="The output directory where the model predictions and checkpoints will be written.", | |
) | |
parser.add_argument( | |
"--height", | |
type=int, | |
default=480, | |
help="All input videos are resized to this height.", | |
) | |
parser.add_argument( | |
"--width", | |
type=int, | |
default=720, | |
help="All input videos are resized to this width.", | |
) | |
parser.add_argument( | |
"--video_reshape_mode", | |
type=str, | |
default="center", | |
help="All input videos are reshaped to this mode. Choose between ['center', 'random', 'none']", | |
) | |
parser.add_argument("--fps", type=int, default=8, help="All input videos will be used at this FPS.") | |
parser.add_argument( | |
"--max_num_frames", type=int, default=49, help="All input videos will be truncated to these many frames." | |
) | |
parser.add_argument( | |
"--skip_frames_start", | |
type=int, | |
default=0, | |
help="Number of frames to skip from the beginning of each input video. Useful if training data contains intro sequences.", | |
) | |
parser.add_argument( | |
"--skip_frames_end", | |
type=int, | |
default=0, | |
help="Number of frames to skip from the end of each input video. Useful if training data contains outro sequences.", | |
) | |
parser.add_argument( | |
"--random_flip", | |
action="store_true", | |
help="whether to randomly flip videos horizontally", | |
) | |
parser.add_argument( | |
"--train_batch_size", type=int, default=4, help="Batch size (per device) for the training dataloader." | |
) | |
parser.add_argument("--num_train_epochs", type=int, default=1) | |
parser.add_argument( | |
"--max_train_steps", | |
type=int, | |
default=None, | |
help="Total number of training steps to perform. If provided, overrides `--num_train_epochs`.", | |
) | |
parser.add_argument( | |
"--checkpointing_steps", | |
type=int, | |
default=500, | |
help=( | |
"Save a checkpoint of the training state every X updates. These checkpoints can be used both as final" | |
" checkpoints in case they are better than the last checkpoint, and are also suitable for resuming" | |
" training using `--resume_from_checkpoint`." | |
), | |
) | |
parser.add_argument( | |
"--checkpoints_total_limit", | |
type=int, | |
default=None, | |
help=("Max number of checkpoints to store."), | |
) | |
parser.add_argument( | |
"--resume_from_checkpoint", | |
type=str, | |
default=None, | |
help=( | |
"Whether training should be resumed from a previous checkpoint. Use a path saved by" | |
' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.' | |
), | |
) | |
parser.add_argument( | |
"--gradient_accumulation_steps", | |
type=int, | |
default=1, | |
help="Number of updates steps to accumulate before performing a backward/update pass.", | |
) | |
parser.add_argument( | |
"--gradient_checkpointing", | |
action="store_true", | |
help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.", | |
) | |
parser.add_argument( | |
"--learning_rate", | |
type=float, | |
default=1e-4, | |
help="Initial learning rate (after the potential warmup period) to use.", | |
) | |
parser.add_argument( | |
"--scale_lr", | |
action="store_true", | |
default=False, | |
help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.", | |
) | |
parser.add_argument( | |
"--lr_scheduler", | |
type=str, | |
default="constant", | |
help=( | |
'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",' | |
' "constant", "constant_with_warmup"]' | |
), | |
) | |
parser.add_argument( | |
"--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler." | |
) | |
parser.add_argument( | |
"--lr_num_cycles", | |
type=int, | |
default=1, | |
help="Number of hard resets of the lr in cosine_with_restarts scheduler.", | |
) | |
parser.add_argument("--lr_power", type=float, default=1.0, help="Power factor of the polynomial scheduler.") | |
parser.add_argument( | |
"--enable_slicing", | |
action="store_true", | |
default=False, | |
help="Whether or not to use VAE slicing for saving memory.", | |
) | |
parser.add_argument( | |
"--enable_tiling", | |
action="store_true", | |
default=False, | |
help="Whether or not to use VAE tiling for saving memory.", | |
) | |
# Optimizer | |
parser.add_argument( | |
"--optimizer", | |
type=lambda s: s.lower(), | |
default="adam", | |
choices=["adam", "adamw", "prodigy"], | |
help=("The optimizer type to use."), | |
) | |
parser.add_argument( | |
"--use_8bit_adam", | |
action="store_true", | |
help="Whether or not to use 8-bit Adam from bitsandbytes. Ignored if optimizer is not set to AdamW", | |
) | |
parser.add_argument( | |
"--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam and Prodigy optimizers." | |
) | |
parser.add_argument( | |
"--adam_beta2", type=float, default=0.95, help="The beta2 parameter for the Adam and Prodigy optimizers." | |
) | |
parser.add_argument( | |
"--prodigy_beta3", | |
type=float, | |
default=None, | |
help="Coefficients for computing the Prodigy optimizer's stepsize using running averages. If set to None, uses the value of square root of beta2.", | |
) | |
parser.add_argument("--prodigy_decouple", action="store_true", help="Use AdamW style decoupled weight decay") | |
parser.add_argument("--adam_weight_decay", type=float, default=1e-04, help="Weight decay to use for unet params") | |
parser.add_argument( | |
"--adam_epsilon", | |
type=float, | |
default=1e-08, | |
help="Epsilon value for the Adam optimizer and Prodigy optimizers.", | |
) | |
parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") | |
parser.add_argument("--prodigy_use_bias_correction", action="store_true", help="Turn on Adam's bias correction.") | |
parser.add_argument( | |
"--prodigy_safeguard_warmup", | |
action="store_true", | |
help="Remove lr from the denominator of D estimate to avoid issues during warm-up stage.", | |
) | |
# Other information | |
parser.add_argument("--tracker_name", type=str, default=None, help="Project tracker name") | |
parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.") | |
parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.") | |
parser.add_argument( | |
"--hub_model_id", | |
type=str, | |
default=None, | |
help="The name of the repository to keep in sync with the local `output_dir`.", | |
) | |
parser.add_argument( | |
"--logging_dir", | |
type=str, | |
default="logs", | |
help="Directory where logs are stored.", | |
) | |
parser.add_argument( | |
"--allow_tf32", | |
action="store_true", | |
help=( | |
"Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see" | |
" https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices" | |
), | |
) | |
parser.add_argument( | |
"--report_to", | |
type=str, | |
default=None, | |
help=( | |
'The integration to report the results and logs to. Supported platforms are `"tensorboard"`' | |
' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.' | |
), | |
) | |
return parser.parse_args() | |
class VideoDataset(Dataset): | |
def __init__( | |
self, | |
instance_data_root: Optional[str] = None, | |
dataset_name: Optional[str] = None, | |
dataset_config_name: Optional[str] = None, | |
caption_column: str = "text", | |
video_column: str = "video", | |
height: int = 480, | |
width: int = 720, | |
video_reshape_mode: str = "center", | |
fps: int = 8, | |
max_num_frames: int = 49, | |
skip_frames_start: int = 0, | |
skip_frames_end: int = 0, | |
cache_dir: Optional[str] = None, | |
id_token: Optional[str] = None, | |
) -> None: | |
super().__init__() | |
self.instance_data_root = Path(instance_data_root) if instance_data_root is not None else None | |
self.dataset_name = dataset_name | |
self.dataset_config_name = dataset_config_name | |
self.caption_column = caption_column | |
self.video_column = video_column | |
self.height = height | |
self.width = width | |
self.video_reshape_mode = video_reshape_mode | |
self.fps = fps | |
self.max_num_frames = max_num_frames | |
self.skip_frames_start = skip_frames_start | |
self.skip_frames_end = skip_frames_end | |
self.cache_dir = cache_dir | |
self.id_token = id_token or "" | |
if dataset_name is not None: | |
self.instance_prompts, self.instance_video_paths = self._load_dataset_from_hub() | |
else: | |
self.instance_prompts, self.instance_video_paths = self._load_dataset_from_local_path() | |
self.num_instance_videos = len(self.instance_video_paths) | |
if self.num_instance_videos != len(self.instance_prompts): | |
raise ValueError( | |
f"Expected length of instance prompts and videos to be the same but found {len(self.instance_prompts)=} and {len(self.instance_video_paths)=}. Please ensure that the number of caption prompts and videos match in your dataset." | |
) | |
self.instance_videos = self._preprocess_data() | |
def __len__(self): | |
return self.num_instance_videos | |
def __getitem__(self, index): | |
return { | |
"instance_prompt": self.id_token + self.instance_prompts[index], | |
"instance_video": self.instance_videos[index], | |
} | |
def _load_dataset_from_hub(self): | |
try: | |
from datasets import load_dataset | |
except ImportError: | |
raise ImportError( | |
"You are trying to load your data using the datasets library. If you wish to train using custom " | |
"captions please install the datasets library: `pip install datasets`. If you wish to load a " | |
"local folder containing images only, specify --instance_data_root instead." | |
) | |
# Downloading and loading a dataset from the hub. See more about loading custom images at | |
# https://huggingface.co/docs/datasets/v2.0.0/en/dataset_script | |
dataset = load_dataset( | |
self.dataset_name, | |
self.dataset_config_name, | |
cache_dir=self.cache_dir, | |
) | |
column_names = dataset["train"].column_names | |
if self.video_column is None: | |
video_column = column_names[0] | |
logger.info(f"`video_column` defaulting to {video_column}") | |
else: | |
video_column = self.video_column | |
if video_column not in column_names: | |
raise ValueError( | |
f"`--video_column` value '{video_column}' not found in dataset columns. Dataset columns are: {', '.join(column_names)}" | |
) | |
if self.caption_column is None: | |
caption_column = column_names[1] | |
logger.info(f"`caption_column` defaulting to {caption_column}") | |
else: | |
caption_column = self.caption_column | |
if self.caption_column not in column_names: | |
raise ValueError( | |
f"`--caption_column` value '{self.caption_column}' not found in dataset columns. Dataset columns are: {', '.join(column_names)}" | |
) | |
instance_prompts = dataset["train"][caption_column] | |
instance_videos = [Path(self.instance_data_root, filepath) for filepath in dataset["train"][video_column]] | |
return instance_prompts, instance_videos | |
def _load_dataset_from_local_path(self): | |
if not self.instance_data_root.exists(): | |
raise ValueError("Instance videos root folder does not exist") | |
prompt_path = self.instance_data_root.joinpath(self.caption_column) | |
video_path = self.instance_data_root.joinpath(self.video_column) | |
if not prompt_path.exists() or not prompt_path.is_file(): | |
raise ValueError( | |
"Expected `--caption_column` to be path to a file in `--instance_data_root` containing line-separated text prompts." | |
) | |
if not video_path.exists() or not video_path.is_file(): | |
raise ValueError( | |
"Expected `--video_column` to be path to a file in `--instance_data_root` containing line-separated paths to video data in the same directory." | |
) | |
with open(prompt_path, "r", encoding="utf-8") as file: | |
instance_prompts = [line.strip() for line in file.readlines() if len(line.strip()) > 0] | |
with open(video_path, "r", encoding="utf-8") as file: | |
instance_videos = [ | |
self.instance_data_root.joinpath(line.strip()) for line in file.readlines() if len(line.strip()) > 0 | |
] | |
if any(not path.is_file() for path in instance_videos): | |
raise ValueError( | |
"Expected '--video_column' to be a path to a file in `--instance_data_root` containing line-separated paths to video data but found atleast one path that is not a valid file." | |
) | |
return instance_prompts, instance_videos | |
def _resize_for_rectangle_crop(self, arr): | |
image_size = self.height, self.width | |
reshape_mode = self.video_reshape_mode | |
if arr.shape[3] / arr.shape[2] > image_size[1] / image_size[0]: | |
arr = resize( | |
arr, | |
size=[image_size[0], int(arr.shape[3] * image_size[0] / arr.shape[2])], | |
interpolation=InterpolationMode.BICUBIC, | |
) | |
else: | |
arr = resize( | |
arr, | |
size=[int(arr.shape[2] * image_size[1] / arr.shape[3]), image_size[1]], | |
interpolation=InterpolationMode.BICUBIC, | |
) | |
h, w = arr.shape[2], arr.shape[3] | |
arr = arr.squeeze(0) | |
delta_h = h - image_size[0] | |
delta_w = w - image_size[1] | |
if reshape_mode == "random" or reshape_mode == "none": | |
top = np.random.randint(0, delta_h + 1) | |
left = np.random.randint(0, delta_w + 1) | |
elif reshape_mode == "center": | |
top, left = delta_h // 2, delta_w // 2 | |
else: | |
raise NotImplementedError | |
arr = TT.functional.crop(arr, top=top, left=left, height=image_size[0], width=image_size[1]) | |
return arr | |
def _preprocess_data(self): | |
try: | |
import decord | |
except ImportError: | |
raise ImportError( | |
"The `decord` package is required for loading the video dataset. Install with `pip install decord`" | |
) | |
decord.bridge.set_bridge("torch") | |
progress_dataset_bar = tqdm( | |
range(0, len(self.instance_video_paths)), | |
desc="Loading progress resize and crop videos", | |
) | |
videos = [] | |
for filename in self.instance_video_paths: | |
video_reader = decord.VideoReader(uri=filename.as_posix()) | |
video_num_frames = len(video_reader) | |
start_frame = min(self.skip_frames_start, video_num_frames) | |
end_frame = max(0, video_num_frames - self.skip_frames_end) | |
if end_frame <= start_frame: | |
frames = video_reader.get_batch([start_frame]) | |
elif end_frame - start_frame <= self.max_num_frames: | |
frames = video_reader.get_batch(list(range(start_frame, end_frame))) | |
else: | |
indices = list(range(start_frame, end_frame, (end_frame - start_frame) // self.max_num_frames)) | |
frames = video_reader.get_batch(indices) | |
# Ensure that we don't go over the limit | |
frames = frames[: self.max_num_frames] | |
selected_num_frames = frames.shape[0] | |
# Choose first (4k + 1) frames as this is how many is required by the VAE | |
remainder = (3 + (selected_num_frames % 4)) % 4 | |
if remainder != 0: | |
frames = frames[:-remainder] | |
selected_num_frames = frames.shape[0] | |
assert (selected_num_frames - 1) % 4 == 0 | |
# Training transforms | |
frames = (frames - 127.5) / 127.5 | |
frames = frames.permute(0, 3, 1, 2) # [F, C, H, W] | |
progress_dataset_bar.set_description( | |
f"Loading progress Resizing video from {frames.shape[2]}x{frames.shape[3]} to {self.height}x{self.width}" | |
) | |
frames = self._resize_for_rectangle_crop(frames) | |
videos.append(frames.contiguous()) # [F, C, H, W] | |
progress_dataset_bar.update(1) | |
progress_dataset_bar.close() | |
return videos | |
def save_model_card( | |
repo_id: str, | |
videos=None, | |
base_model: str = None, | |
validation_prompt=None, | |
repo_folder=None, | |
fps=8, | |
): | |
widget_dict = [] | |
if videos is not None: | |
for i, video in enumerate(videos): | |
export_to_video(video, os.path.join(repo_folder, f"final_video_{i}.mp4", fps=fps)) | |
widget_dict.append( | |
{"text": validation_prompt if validation_prompt else " ", "output": {"url": f"video_{i}.mp4"}} | |
) | |
model_description = f""" | |
# CogVideoX LoRA - {repo_id} | |
<Gallery /> | |
## Model description | |
These are {repo_id} LoRA weights for {base_model}. | |
The weights were trained using the [CogVideoX Diffusers trainer](https://github.com/huggingface/diffusers/blob/main/examples/cogvideo/train_cogvideox_lora.py). | |
Was LoRA for the text encoder enabled? No. | |
## Download model | |
[Download the *.safetensors LoRA]({repo_id}/tree/main) in the Files & versions tab. | |
## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) | |
```py | |
from diffusers import CogVideoXPipeline | |
import torch | |
pipe = CogVideoXPipeline.from_pretrained("THUDM/CogVideoX-5b", torch_dtype=torch.bfloat16).to("cuda") | |
pipe.load_lora_weights("{repo_id}", weight_name="pytorch_lora_weights.safetensors", adapter_name=["cogvideox-lora"]) | |
# The LoRA adapter weights are determined by what was used for training. | |
# In this case, we assume `--lora_alpha` is 32 and `--rank` is 64. | |
# It can be made lower or higher from what was used in training to decrease or amplify the effect | |
# of the LoRA upto a tolerance, beyond which one might notice no effect at all or overflows. | |
pipe.set_adapters(["cogvideox-lora"], [32 / 64]) | |
video = pipe("{validation_prompt}", guidance_scale=6, use_dynamic_cfg=True).frames[0] | |
``` | |
For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) | |
## License | |
Please adhere to the licensing terms as described [here](https://huggingface.co/THUDM/CogVideoX-5b/blob/main/LICENSE) and [here](https://huggingface.co/THUDM/CogVideoX-2b/blob/main/LICENSE). | |
""" | |
model_card = load_or_create_model_card( | |
repo_id_or_path=repo_id, | |
from_training=True, | |
license="other", | |
base_model=base_model, | |
prompt=validation_prompt, | |
model_description=model_description, | |
widget=widget_dict, | |
) | |
tags = [ | |
"text-to-video", | |
"diffusers-training", | |
"diffusers", | |
"lora", | |
"cogvideox", | |
"cogvideox-diffusers", | |
"template:sd-lora", | |
] | |
model_card = populate_model_card(model_card, tags=tags) | |
model_card.save(os.path.join(repo_folder, "README.md")) | |
def log_validation( | |
pipe, | |
args, | |
accelerator, | |
pipeline_args, | |
epoch, | |
is_final_validation: bool = False, | |
): | |
logger.info( | |
f"Running validation... \n Generating {args.num_validation_videos} videos with prompt: {pipeline_args['prompt']}." | |
) | |
# We train on the simplified learning objective. If we were previously predicting a variance, we need the scheduler to ignore it | |
scheduler_args = {} | |
if "variance_type" in pipe.scheduler.config: | |
variance_type = pipe.scheduler.config.variance_type | |
if variance_type in ["learned", "learned_range"]: | |
variance_type = "fixed_small" | |
scheduler_args["variance_type"] = variance_type | |
pipe.scheduler = CogVideoXDPMScheduler.from_config(pipe.scheduler.config, **scheduler_args) | |
pipe = pipe.to(accelerator.device) | |
# pipe.set_progress_bar_config(disable=True) | |
# run inference | |
generator = torch.Generator(device=accelerator.device).manual_seed(args.seed) if args.seed else None | |
videos = [] | |
for _ in range(args.num_validation_videos): | |
pt_images = pipe(**pipeline_args, generator=generator, output_type="pt").frames[0] | |
pt_images = torch.stack([pt_images[i] for i in range(pt_images.shape[0])]) | |
image_np = VaeImageProcessor.pt_to_numpy(pt_images) | |
image_pil = VaeImageProcessor.numpy_to_pil(image_np) | |
videos.append(image_pil) | |
for tracker in accelerator.trackers: | |
phase_name = "test" if is_final_validation else "validation" | |
if tracker.name == "wandb": | |
video_filenames = [] | |
for i, video in enumerate(videos): | |
prompt = ( | |
pipeline_args["prompt"][:25] | |
.replace(" ", "_") | |
.replace(" ", "_") | |
.replace("'", "_") | |
.replace('"', "_") | |
.replace("/", "_") | |
) | |
filename = os.path.join(args.output_dir, f"{phase_name}_video_{i}_{prompt}.mp4") | |
export_to_video(video, filename, fps=8) | |
video_filenames.append(filename) | |
tracker.log( | |
{ | |
phase_name: [ | |
wandb.Video(filename, caption=f"{i}: {pipeline_args['prompt']}") | |
for i, filename in enumerate(video_filenames) | |
] | |
} | |
) | |
del pipe | |
free_memory() | |
return videos | |
def _get_t5_prompt_embeds( | |
tokenizer: T5Tokenizer, | |
text_encoder: T5EncoderModel, | |
prompt: Union[str, List[str]], | |
num_videos_per_prompt: int = 1, | |
max_sequence_length: int = 226, | |
device: Optional[torch.device] = None, | |
dtype: Optional[torch.dtype] = None, | |
text_input_ids=None, | |
): | |
prompt = [prompt] if isinstance(prompt, str) else prompt | |
batch_size = len(prompt) | |
if tokenizer is not None: | |
text_inputs = tokenizer( | |
prompt, | |
padding="max_length", | |
max_length=max_sequence_length, | |
truncation=True, | |
add_special_tokens=True, | |
return_tensors="pt", | |
) | |
text_input_ids = text_inputs.input_ids | |
else: | |
if text_input_ids is None: | |
raise ValueError("`text_input_ids` must be provided when the tokenizer is not specified.") | |
prompt_embeds = text_encoder(text_input_ids.to(device))[0] | |
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device) | |
# duplicate text embeddings for each generation per prompt, using mps friendly method | |
_, seq_len, _ = prompt_embeds.shape | |
prompt_embeds = prompt_embeds.repeat(1, num_videos_per_prompt, 1) | |
prompt_embeds = prompt_embeds.view(batch_size * num_videos_per_prompt, seq_len, -1) | |
return prompt_embeds | |
def encode_prompt( | |
tokenizer: T5Tokenizer, | |
text_encoder: T5EncoderModel, | |
prompt: Union[str, List[str]], | |
num_videos_per_prompt: int = 1, | |
max_sequence_length: int = 226, | |
device: Optional[torch.device] = None, | |
dtype: Optional[torch.dtype] = None, | |
text_input_ids=None, | |
): | |
prompt = [prompt] if isinstance(prompt, str) else prompt | |
prompt_embeds = _get_t5_prompt_embeds( | |
tokenizer, | |
text_encoder, | |
prompt=prompt, | |
num_videos_per_prompt=num_videos_per_prompt, | |
max_sequence_length=max_sequence_length, | |
device=device, | |
dtype=dtype, | |
text_input_ids=text_input_ids, | |
) | |
return prompt_embeds | |
def compute_prompt_embeddings( | |
tokenizer, text_encoder, prompt, max_sequence_length, device, dtype, requires_grad: bool = False | |
): | |
if requires_grad: | |
prompt_embeds = encode_prompt( | |
tokenizer, | |
text_encoder, | |
prompt, | |
num_videos_per_prompt=1, | |
max_sequence_length=max_sequence_length, | |
device=device, | |
dtype=dtype, | |
) | |
else: | |
with torch.no_grad(): | |
prompt_embeds = encode_prompt( | |
tokenizer, | |
text_encoder, | |
prompt, | |
num_videos_per_prompt=1, | |
max_sequence_length=max_sequence_length, | |
device=device, | |
dtype=dtype, | |
) | |
return prompt_embeds | |
def prepare_rotary_positional_embeddings( | |
height: int, | |
width: int, | |
num_frames: int, | |
vae_scale_factor_spatial: int = 8, | |
patch_size: int = 2, | |
attention_head_dim: int = 64, | |
device: Optional[torch.device] = None, | |
base_height: int = 480, | |
base_width: int = 720, | |
) -> Tuple[torch.Tensor, torch.Tensor]: | |
grid_height = height // (vae_scale_factor_spatial * patch_size) | |
grid_width = width // (vae_scale_factor_spatial * patch_size) | |
base_size_width = base_width // (vae_scale_factor_spatial * patch_size) | |
base_size_height = base_height // (vae_scale_factor_spatial * patch_size) | |
grid_crops_coords = get_resize_crop_region_for_grid((grid_height, grid_width), base_size_width, base_size_height) | |
freqs_cos, freqs_sin = get_3d_rotary_pos_embed( | |
embed_dim=attention_head_dim, | |
crops_coords=grid_crops_coords, | |
grid_size=(grid_height, grid_width), | |
temporal_size=num_frames, | |
device=device, | |
) | |
return freqs_cos, freqs_sin | |
def get_optimizer(args, params_to_optimize, use_deepspeed: bool = False): | |
# Use DeepSpeed optimzer | |
if use_deepspeed: | |
from accelerate.utils import DummyOptim | |
return DummyOptim( | |
params_to_optimize, | |
lr=args.learning_rate, | |
betas=(args.adam_beta1, args.adam_beta2), | |
eps=args.adam_epsilon, | |
weight_decay=args.adam_weight_decay, | |
) | |
# Optimizer creation | |
supported_optimizers = ["adam", "adamw", "prodigy"] | |
if args.optimizer not in supported_optimizers: | |
logger.warning( | |
f"Unsupported choice of optimizer: {args.optimizer}. Supported optimizers include {supported_optimizers}. Defaulting to AdamW" | |
) | |
args.optimizer = "adamw" | |
if args.use_8bit_adam and args.optimizer.lower() not in ["adam", "adamw"]: | |
logger.warning( | |
f"use_8bit_adam is ignored when optimizer is not set to 'Adam' or 'AdamW'. Optimizer was " | |
f"set to {args.optimizer.lower()}" | |
) | |
if args.use_8bit_adam: | |
try: | |
import bitsandbytes as bnb | |
except ImportError: | |
raise ImportError( | |
"To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`." | |
) | |
if args.optimizer.lower() == "adamw": | |
optimizer_class = bnb.optim.AdamW8bit if args.use_8bit_adam else torch.optim.AdamW | |
optimizer = optimizer_class( | |
params_to_optimize, | |
betas=(args.adam_beta1, args.adam_beta2), | |
eps=args.adam_epsilon, | |
weight_decay=args.adam_weight_decay, | |
) | |
elif args.optimizer.lower() == "adam": | |
optimizer_class = bnb.optim.Adam8bit if args.use_8bit_adam else torch.optim.Adam | |
optimizer = optimizer_class( | |
params_to_optimize, | |
betas=(args.adam_beta1, args.adam_beta2), | |
eps=args.adam_epsilon, | |
weight_decay=args.adam_weight_decay, | |
) | |
elif args.optimizer.lower() == "prodigy": | |
try: | |
import prodigyopt | |
except ImportError: | |
raise ImportError("To use Prodigy, please install the prodigyopt library: `pip install prodigyopt`") | |
optimizer_class = prodigyopt.Prodigy | |
if args.learning_rate <= 0.1: | |
logger.warning( | |
"Learning rate is too low. When using prodigy, it's generally better to set learning rate around 1.0" | |
) | |
optimizer = optimizer_class( | |
params_to_optimize, | |
betas=(args.adam_beta1, args.adam_beta2), | |
beta3=args.prodigy_beta3, | |
weight_decay=args.adam_weight_decay, | |
eps=args.adam_epsilon, | |
decouple=args.prodigy_decouple, | |
use_bias_correction=args.prodigy_use_bias_correction, | |
safeguard_warmup=args.prodigy_safeguard_warmup, | |
) | |
return optimizer | |
def main(args): | |
if args.report_to == "wandb" and args.hub_token is not None: | |
raise ValueError( | |
"You cannot use both --report_to=wandb and --hub_token due to a security risk of exposing your token." | |
" Please use `huggingface-cli login` to authenticate with the Hub." | |
) | |
if torch.backends.mps.is_available() and args.mixed_precision == "bf16": | |
# due to pytorch#99272, MPS does not yet support bfloat16. | |
raise ValueError( | |
"Mixed precision training with bfloat16 is not supported on MPS. Please use fp16 (recommended) or fp32 instead." | |
) | |
logging_dir = Path(args.output_dir, args.logging_dir) | |
accelerator_project_config = ProjectConfiguration(project_dir=args.output_dir, logging_dir=logging_dir) | |
kwargs = DistributedDataParallelKwargs(find_unused_parameters=True) | |
accelerator = Accelerator( | |
gradient_accumulation_steps=args.gradient_accumulation_steps, | |
mixed_precision=args.mixed_precision, | |
log_with=args.report_to, | |
project_config=accelerator_project_config, | |
kwargs_handlers=[kwargs], | |
) | |
# Disable AMP for MPS. | |
if torch.backends.mps.is_available(): | |
accelerator.native_amp = False | |
if args.report_to == "wandb": | |
if not is_wandb_available(): | |
raise ImportError("Make sure to install wandb if you want to use it for logging during training.") | |
# Make one log on every process with the configuration for debugging. | |
logging.basicConfig( | |
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", | |
datefmt="%m/%d/%Y %H:%M:%S", | |
level=logging.INFO, | |
) | |
logger.info(accelerator.state, main_process_only=False) | |
if accelerator.is_local_main_process: | |
transformers.utils.logging.set_verbosity_warning() | |
diffusers.utils.logging.set_verbosity_info() | |
else: | |
transformers.utils.logging.set_verbosity_error() | |
diffusers.utils.logging.set_verbosity_error() | |
# If passed along, set the training seed now. | |
if args.seed is not None: | |
set_seed(args.seed) | |
# Handle the repository creation | |
if accelerator.is_main_process: | |
if args.output_dir is not None: | |
os.makedirs(args.output_dir, exist_ok=True) | |
if args.push_to_hub: | |
repo_id = create_repo( | |
repo_id=args.hub_model_id or Path(args.output_dir).name, | |
exist_ok=True, | |
).repo_id | |
# Prepare models and scheduler | |
tokenizer = AutoTokenizer.from_pretrained( | |
args.pretrained_model_name_or_path, subfolder="tokenizer", revision=args.revision | |
) | |
text_encoder = T5EncoderModel.from_pretrained( | |
args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision | |
) | |
# CogVideoX-2b weights are stored in float16 | |
# CogVideoX-5b and CogVideoX-5b-I2V weights are stored in bfloat16 | |
load_dtype = torch.bfloat16 if "5b" in args.pretrained_model_name_or_path.lower() else torch.float16 | |
transformer = CogVideoXTransformer3DModel.from_pretrained( | |
args.pretrained_model_name_or_path, | |
subfolder="transformer", | |
torch_dtype=load_dtype, | |
revision=args.revision, | |
variant=args.variant, | |
) | |
vae = AutoencoderKLCogVideoX.from_pretrained( | |
args.pretrained_model_name_or_path, subfolder="vae", revision=args.revision, variant=args.variant | |
) | |
scheduler = CogVideoXDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler") | |
if args.enable_slicing: | |
vae.enable_slicing() | |
if args.enable_tiling: | |
vae.enable_tiling() | |
# We only train the additional adapter LoRA layers | |
text_encoder.requires_grad_(False) | |
transformer.requires_grad_(False) | |
vae.requires_grad_(False) | |
# For mixed precision training we cast all non-trainable weights (vae, text_encoder and transformer) to half-precision | |
# as these weights are only used for inference, keeping weights in full precision is not required. | |
weight_dtype = torch.float32 | |
if accelerator.state.deepspeed_plugin: | |
# DeepSpeed is handling precision, use what's in the DeepSpeed config | |
if ( | |
"fp16" in accelerator.state.deepspeed_plugin.deepspeed_config | |
and accelerator.state.deepspeed_plugin.deepspeed_config["fp16"]["enabled"] | |
): | |
weight_dtype = torch.float16 | |
if ( | |
"bf16" in accelerator.state.deepspeed_plugin.deepspeed_config | |
and accelerator.state.deepspeed_plugin.deepspeed_config["bf16"]["enabled"] | |
): | |
weight_dtype = torch.float16 | |
else: | |
if accelerator.mixed_precision == "fp16": | |
weight_dtype = torch.float16 | |
elif accelerator.mixed_precision == "bf16": | |
weight_dtype = torch.bfloat16 | |
if torch.backends.mps.is_available() and weight_dtype == torch.bfloat16: | |
# due to pytorch#99272, MPS does not yet support bfloat16. | |
raise ValueError( | |
"Mixed precision training with bfloat16 is not supported on MPS. Please use fp16 (recommended) or fp32 instead." | |
) | |
text_encoder.to(accelerator.device, dtype=weight_dtype) | |
transformer.to(accelerator.device, dtype=weight_dtype) | |
vae.to(accelerator.device, dtype=weight_dtype) | |
if args.gradient_checkpointing: | |
transformer.enable_gradient_checkpointing() | |
# now we will add new LoRA weights to the attention layers | |
transformer_lora_config = LoraConfig( | |
r=args.rank, | |
lora_alpha=args.lora_alpha, | |
init_lora_weights=True, | |
target_modules=["to_k", "to_q", "to_v", "to_out.0"], | |
) | |
transformer.add_adapter(transformer_lora_config) | |
def unwrap_model(model): | |
model = accelerator.unwrap_model(model) | |
model = model._orig_mod if is_compiled_module(model) else model | |
return model | |
# create custom saving & loading hooks so that `accelerator.save_state(...)` serializes in a nice format | |
def save_model_hook(models, weights, output_dir): | |
if accelerator.is_main_process: | |
transformer_lora_layers_to_save = None | |
for model in models: | |
if isinstance(model, type(unwrap_model(transformer))): | |
transformer_lora_layers_to_save = get_peft_model_state_dict(model) | |
else: | |
raise ValueError(f"unexpected save model: {model.__class__}") | |
# make sure to pop weight so that corresponding model is not saved again | |
weights.pop() | |
CogVideoXPipeline.save_lora_weights( | |
output_dir, | |
transformer_lora_layers=transformer_lora_layers_to_save, | |
) | |
def load_model_hook(models, input_dir): | |
transformer_ = None | |
while len(models) > 0: | |
model = models.pop() | |
if isinstance(model, type(unwrap_model(transformer))): | |
transformer_ = model | |
else: | |
raise ValueError(f"Unexpected save model: {model.__class__}") | |
lora_state_dict = CogVideoXPipeline.lora_state_dict(input_dir) | |
transformer_state_dict = { | |
f'{k.replace("transformer.", "")}': v for k, v in lora_state_dict.items() if k.startswith("transformer.") | |
} | |
transformer_state_dict = convert_unet_state_dict_to_peft(transformer_state_dict) | |
incompatible_keys = set_peft_model_state_dict(transformer_, transformer_state_dict, adapter_name="default") | |
if incompatible_keys is not None: | |
# check only for unexpected keys | |
unexpected_keys = getattr(incompatible_keys, "unexpected_keys", None) | |
if unexpected_keys: | |
logger.warning( | |
f"Loading adapter weights from state_dict led to unexpected keys not found in the model: " | |
f" {unexpected_keys}. " | |
) | |
# Make sure the trainable params are in float32. This is again needed since the base models | |
# are in `weight_dtype`. More details: | |
# https://github.com/huggingface/diffusers/pull/6514#discussion_r1449796804 | |
if args.mixed_precision == "fp16": | |
# only upcast trainable parameters (LoRA) into fp32 | |
cast_training_params([transformer_]) | |
accelerator.register_save_state_pre_hook(save_model_hook) | |
accelerator.register_load_state_pre_hook(load_model_hook) | |
# Enable TF32 for faster training on Ampere GPUs, | |
# cf https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices | |
if args.allow_tf32 and torch.cuda.is_available(): | |
torch.backends.cuda.matmul.allow_tf32 = True | |
if args.scale_lr: | |
args.learning_rate = ( | |
args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes | |
) | |
# Make sure the trainable params are in float32. | |
if args.mixed_precision == "fp16": | |
# only upcast trainable parameters (LoRA) into fp32 | |
cast_training_params([transformer], dtype=torch.float32) | |
transformer_lora_parameters = list(filter(lambda p: p.requires_grad, transformer.parameters())) | |
# Optimization parameters | |
transformer_parameters_with_lr = {"params": transformer_lora_parameters, "lr": args.learning_rate} | |
params_to_optimize = [transformer_parameters_with_lr] | |
use_deepspeed_optimizer = ( | |
accelerator.state.deepspeed_plugin is not None | |
and "optimizer" in accelerator.state.deepspeed_plugin.deepspeed_config | |
) | |
use_deepspeed_scheduler = ( | |
accelerator.state.deepspeed_plugin is not None | |
and "scheduler" in accelerator.state.deepspeed_plugin.deepspeed_config | |
) | |
optimizer = get_optimizer(args, params_to_optimize, use_deepspeed=use_deepspeed_optimizer) | |
# Dataset and DataLoader | |
train_dataset = VideoDataset( | |
instance_data_root=args.instance_data_root, | |
dataset_name=args.dataset_name, | |
dataset_config_name=args.dataset_config_name, | |
caption_column=args.caption_column, | |
video_column=args.video_column, | |
height=args.height, | |
width=args.width, | |
video_reshape_mode=args.video_reshape_mode, | |
fps=args.fps, | |
max_num_frames=args.max_num_frames, | |
skip_frames_start=args.skip_frames_start, | |
skip_frames_end=args.skip_frames_end, | |
cache_dir=args.cache_dir, | |
id_token=args.id_token, | |
) | |
def encode_video(video, bar): | |
bar.update(1) | |
video = video.to(accelerator.device, dtype=vae.dtype).unsqueeze(0) | |
video = video.permute(0, 2, 1, 3, 4) # [B, C, F, H, W] | |
latent_dist = vae.encode(video).latent_dist | |
return latent_dist | |
progress_encode_bar = tqdm( | |
range(0, len(train_dataset.instance_videos)), | |
desc="Loading Encode videos", | |
) | |
train_dataset.instance_videos = [ | |
encode_video(video, progress_encode_bar) for video in train_dataset.instance_videos | |
] | |
progress_encode_bar.close() | |
def collate_fn(examples): | |
videos = [example["instance_video"].sample() * vae.config.scaling_factor for example in examples] | |
prompts = [example["instance_prompt"] for example in examples] | |
videos = torch.cat(videos) | |
videos = videos.permute(0, 2, 1, 3, 4) | |
videos = videos.to(memory_format=torch.contiguous_format).float() | |
return { | |
"videos": videos, | |
"prompts": prompts, | |
} | |
train_dataloader = DataLoader( | |
train_dataset, | |
batch_size=args.train_batch_size, | |
shuffle=True, | |
collate_fn=collate_fn, | |
num_workers=args.dataloader_num_workers, | |
) | |
# Scheduler and math around the number of training steps. | |
overrode_max_train_steps = False | |
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) | |
if args.max_train_steps is None: | |
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch | |
overrode_max_train_steps = True | |
if use_deepspeed_scheduler: | |
from accelerate.utils import DummyScheduler | |
lr_scheduler = DummyScheduler( | |
name=args.lr_scheduler, | |
optimizer=optimizer, | |
total_num_steps=args.max_train_steps * accelerator.num_processes, | |
num_warmup_steps=args.lr_warmup_steps * accelerator.num_processes, | |
) | |
else: | |
lr_scheduler = get_scheduler( | |
args.lr_scheduler, | |
optimizer=optimizer, | |
num_warmup_steps=args.lr_warmup_steps * accelerator.num_processes, | |
num_training_steps=args.max_train_steps * accelerator.num_processes, | |
num_cycles=args.lr_num_cycles, | |
power=args.lr_power, | |
) | |
# Prepare everything with our `accelerator`. | |
transformer, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( | |
transformer, optimizer, train_dataloader, lr_scheduler | |
) | |
# We need to recalculate our total training steps as the size of the training dataloader may have changed. | |
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) | |
if overrode_max_train_steps: | |
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch | |
# Afterwards we recalculate our number of training epochs | |
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) | |
# We need to initialize the trackers we use, and also store our configuration. | |
# The trackers initializes automatically on the main process. | |
if accelerator.is_main_process: | |
tracker_name = args.tracker_name or "cogvideox-lora" | |
accelerator.init_trackers(tracker_name, config=vars(args)) | |
# Train! | |
total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps | |
num_trainable_parameters = sum(param.numel() for model in params_to_optimize for param in model["params"]) | |
logger.info("***** Running training *****") | |
logger.info(f" Num trainable parameters = {num_trainable_parameters}") | |
logger.info(f" Num examples = {len(train_dataset)}") | |
logger.info(f" Num batches each epoch = {len(train_dataloader)}") | |
logger.info(f" Num epochs = {args.num_train_epochs}") | |
logger.info(f" Instantaneous batch size per device = {args.train_batch_size}") | |
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}") | |
logger.info(f" Gradient accumulation steps = {args.gradient_accumulation_steps}") | |
logger.info(f" Total optimization steps = {args.max_train_steps}") | |
global_step = 0 | |
first_epoch = 0 | |
# Potentially load in the weights and states from a previous save | |
if not args.resume_from_checkpoint: | |
initial_global_step = 0 | |
else: | |
if args.resume_from_checkpoint != "latest": | |
path = os.path.basename(args.resume_from_checkpoint) | |
else: | |
# Get the mos recent checkpoint | |
dirs = os.listdir(args.output_dir) | |
dirs = [d for d in dirs if d.startswith("checkpoint")] | |
dirs = sorted(dirs, key=lambda x: int(x.split("-")[1])) | |
path = dirs[-1] if len(dirs) > 0 else None | |
if path is None: | |
accelerator.print( | |
f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run." | |
) | |
args.resume_from_checkpoint = None | |
initial_global_step = 0 | |
else: | |
accelerator.print(f"Resuming from checkpoint {path}") | |
accelerator.load_state(os.path.join(args.output_dir, path)) | |
global_step = int(path.split("-")[1]) | |
initial_global_step = global_step | |
first_epoch = global_step // num_update_steps_per_epoch | |
progress_bar = tqdm( | |
range(0, args.max_train_steps), | |
initial=initial_global_step, | |
desc="Steps", | |
# Only show the progress bar once on each machine. | |
disable=not accelerator.is_local_main_process, | |
) | |
vae_scale_factor_spatial = 2 ** (len(vae.config.block_out_channels) - 1) | |
# For DeepSpeed training | |
model_config = transformer.module.config if hasattr(transformer, "module") else transformer.config | |
for epoch in range(first_epoch, args.num_train_epochs): | |
transformer.train() | |
for step, batch in enumerate(train_dataloader): | |
models_to_accumulate = [transformer] | |
with accelerator.accumulate(models_to_accumulate): | |
model_input = batch["videos"].to(dtype=weight_dtype) # [B, F, C, H, W] | |
prompts = batch["prompts"] | |
# encode prompts | |
prompt_embeds = compute_prompt_embeddings( | |
tokenizer, | |
text_encoder, | |
prompts, | |
model_config.max_text_seq_length, | |
accelerator.device, | |
weight_dtype, | |
requires_grad=False, | |
) | |
# Sample noise that will be added to the latents | |
noise = torch.randn_like(model_input) | |
batch_size, num_frames, num_channels, height, width = model_input.shape | |
# Sample a random timestep for each image | |
timesteps = torch.randint( | |
0, scheduler.config.num_train_timesteps, (batch_size,), device=model_input.device | |
) | |
timesteps = timesteps.long() | |
# Prepare rotary embeds | |
image_rotary_emb = ( | |
prepare_rotary_positional_embeddings( | |
height=args.height, | |
width=args.width, | |
num_frames=num_frames, | |
vae_scale_factor_spatial=vae_scale_factor_spatial, | |
patch_size=model_config.patch_size, | |
attention_head_dim=model_config.attention_head_dim, | |
device=accelerator.device, | |
) | |
if model_config.use_rotary_positional_embeddings | |
else None | |
) | |
# Add noise to the model input according to the noise magnitude at each timestep | |
# (this is the forward diffusion process) | |
noisy_model_input = scheduler.add_noise(model_input, noise, timesteps) | |
# Predict the noise residual | |
model_output = transformer( | |
hidden_states=noisy_model_input, | |
encoder_hidden_states=prompt_embeds, | |
timestep=timesteps, | |
image_rotary_emb=image_rotary_emb, | |
return_dict=False, | |
)[0] | |
model_pred = scheduler.get_velocity(model_output, noisy_model_input, timesteps) | |
alphas_cumprod = scheduler.alphas_cumprod[timesteps] | |
weights = 1 / (1 - alphas_cumprod) | |
while len(weights.shape) < len(model_pred.shape): | |
weights = weights.unsqueeze(-1) | |
target = model_input | |
loss = torch.mean((weights * (model_pred - target) ** 2).reshape(batch_size, -1), dim=1) | |
loss = loss.mean() | |
accelerator.backward(loss) | |
if accelerator.sync_gradients: | |
params_to_clip = transformer.parameters() | |
accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm) | |
if accelerator.state.deepspeed_plugin is None: | |
optimizer.step() | |
optimizer.zero_grad() | |
lr_scheduler.step() | |
# Checks if the accelerator has performed an optimization step behind the scenes | |
if accelerator.sync_gradients: | |
progress_bar.update(1) | |
global_step += 1 | |
if accelerator.is_main_process or accelerator.distributed_type == DistributedType.DEEPSPEED: | |
if global_step % args.checkpointing_steps == 0: | |
# _before_ saving state, check if this save would set us over the `checkpoints_total_limit` | |
if args.checkpoints_total_limit is not None: | |
checkpoints = os.listdir(args.output_dir) | |
checkpoints = [d for d in checkpoints if d.startswith("checkpoint")] | |
checkpoints = sorted(checkpoints, key=lambda x: int(x.split("-")[1])) | |
# before we save the new checkpoint, we need to have at _most_ `checkpoints_total_limit - 1` checkpoints | |
if len(checkpoints) >= args.checkpoints_total_limit: | |
num_to_remove = len(checkpoints) - args.checkpoints_total_limit + 1 | |
removing_checkpoints = checkpoints[0:num_to_remove] | |
logger.info( | |
f"{len(checkpoints)} checkpoints already exist, removing {len(removing_checkpoints)} checkpoints" | |
) | |
logger.info(f"Removing checkpoints: {', '.join(removing_checkpoints)}") | |
for removing_checkpoint in removing_checkpoints: | |
removing_checkpoint = os.path.join(args.output_dir, removing_checkpoint) | |
shutil.rmtree(removing_checkpoint) | |
save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}") | |
accelerator.save_state(save_path) | |
logger.info(f"Saved state to {save_path}") | |
logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]} | |
progress_bar.set_postfix(**logs) | |
accelerator.log(logs, step=global_step) | |
if global_step >= args.max_train_steps: | |
break | |
if accelerator.is_main_process: | |
if args.validation_prompt is not None and (epoch + 1) % args.validation_epochs == 0: | |
# Create pipeline | |
pipe = CogVideoXPipeline.from_pretrained( | |
args.pretrained_model_name_or_path, | |
transformer=unwrap_model(transformer), | |
text_encoder=unwrap_model(text_encoder), | |
scheduler=scheduler, | |
revision=args.revision, | |
variant=args.variant, | |
torch_dtype=weight_dtype, | |
) | |
validation_prompts = args.validation_prompt.split(args.validation_prompt_separator) | |
for validation_prompt in validation_prompts: | |
pipeline_args = { | |
"prompt": validation_prompt, | |
"guidance_scale": args.guidance_scale, | |
"use_dynamic_cfg": args.use_dynamic_cfg, | |
"height": args.height, | |
"width": args.width, | |
} | |
validation_outputs = log_validation( | |
pipe=pipe, | |
args=args, | |
accelerator=accelerator, | |
pipeline_args=pipeline_args, | |
epoch=epoch, | |
) | |
# Save the lora layers | |
accelerator.wait_for_everyone() | |
if accelerator.is_main_process: | |
transformer = unwrap_model(transformer) | |
dtype = ( | |
torch.float16 | |
if args.mixed_precision == "fp16" | |
else torch.bfloat16 | |
if args.mixed_precision == "bf16" | |
else torch.float32 | |
) | |
transformer = transformer.to(dtype) | |
transformer_lora_layers = get_peft_model_state_dict(transformer) | |
CogVideoXPipeline.save_lora_weights( | |
save_directory=args.output_dir, | |
transformer_lora_layers=transformer_lora_layers, | |
) | |
# Cleanup trained models to save memory | |
del transformer | |
free_memory() | |
# Final test inference | |
pipe = CogVideoXPipeline.from_pretrained( | |
args.pretrained_model_name_or_path, | |
revision=args.revision, | |
variant=args.variant, | |
torch_dtype=weight_dtype, | |
) | |
pipe.scheduler = CogVideoXDPMScheduler.from_config(pipe.scheduler.config) | |
if args.enable_slicing: | |
pipe.vae.enable_slicing() | |
if args.enable_tiling: | |
pipe.vae.enable_tiling() | |
# Load LoRA weights | |
lora_scaling = args.lora_alpha / args.rank | |
pipe.load_lora_weights(args.output_dir, adapter_name="cogvideox-lora") | |
pipe.set_adapters(["cogvideox-lora"], [lora_scaling]) | |
# Run inference | |
validation_outputs = [] | |
if args.validation_prompt and args.num_validation_videos > 0: | |
validation_prompts = args.validation_prompt.split(args.validation_prompt_separator) | |
for validation_prompt in validation_prompts: | |
pipeline_args = { | |
"prompt": validation_prompt, | |
"guidance_scale": args.guidance_scale, | |
"use_dynamic_cfg": args.use_dynamic_cfg, | |
"height": args.height, | |
"width": args.width, | |
} | |
video = log_validation( | |
pipe=pipe, | |
args=args, | |
accelerator=accelerator, | |
pipeline_args=pipeline_args, | |
epoch=epoch, | |
is_final_validation=True, | |
) | |
validation_outputs.extend(video) | |
if args.push_to_hub: | |
save_model_card( | |
repo_id, | |
videos=validation_outputs, | |
base_model=args.pretrained_model_name_or_path, | |
validation_prompt=args.validation_prompt, | |
repo_folder=args.output_dir, | |
fps=args.fps, | |
) | |
upload_folder( | |
repo_id=repo_id, | |
folder_path=args.output_dir, | |
commit_message="End of training", | |
ignore_patterns=["step_*", "epoch_*"], | |
) | |
accelerator.end_training() | |
if __name__ == "__main__": | |
args = get_args() | |
main(args) | |