Spaces:
Running
on
Zero
Running
on
Zero
#!/usr/bin/env python | |
# coding=utf-8 | |
# Copyright 2025 The HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
import argparse | |
import copy | |
import functools | |
import logging | |
import math | |
import os | |
import random | |
import shutil | |
from contextlib import nullcontext | |
from pathlib import Path | |
import accelerate | |
import numpy as np | |
import torch | |
import torch.nn.functional as F | |
import torch.utils.checkpoint | |
import transformers | |
from accelerate import Accelerator | |
from accelerate.logging import get_logger | |
from accelerate.utils import DistributedType, ProjectConfiguration, set_seed | |
from datasets import load_dataset | |
from huggingface_hub import create_repo, upload_folder | |
from packaging import version | |
from PIL import Image | |
from torchvision import transforms | |
from tqdm.auto import tqdm | |
from transformers import ( | |
AutoTokenizer, | |
CLIPTextModel, | |
T5EncoderModel, | |
) | |
import diffusers | |
from diffusers import ( | |
AutoencoderKL, | |
FlowMatchEulerDiscreteScheduler, | |
FluxTransformer2DModel, | |
) | |
from diffusers.models.controlnet_flux import FluxControlNetModel | |
from diffusers.optimization import get_scheduler | |
from diffusers.pipelines.flux.pipeline_flux_controlnet import FluxControlNetPipeline | |
from diffusers.training_utils import compute_density_for_timestep_sampling, free_memory | |
from diffusers.utils import check_min_version, is_wandb_available, make_image_grid | |
from diffusers.utils.hub_utils import load_or_create_model_card, populate_model_card | |
from diffusers.utils.import_utils import is_torch_npu_available, is_xformers_available | |
from diffusers.utils.torch_utils import is_compiled_module | |
if is_wandb_available(): | |
import wandb | |
# Will error if the minimal version of diffusers is not installed. Remove at your own risks. | |
check_min_version("0.33.0.dev0") | |
logger = get_logger(__name__) | |
if is_torch_npu_available(): | |
torch.npu.config.allow_internal_format = False | |
def log_validation( | |
vae, flux_transformer, flux_controlnet, args, accelerator, weight_dtype, step, is_final_validation=False | |
): | |
logger.info("Running validation... ") | |
if not is_final_validation: | |
flux_controlnet = accelerator.unwrap_model(flux_controlnet) | |
pipeline = FluxControlNetPipeline.from_pretrained( | |
args.pretrained_model_name_or_path, | |
controlnet=flux_controlnet, | |
transformer=flux_transformer, | |
torch_dtype=torch.bfloat16, | |
) | |
else: | |
flux_controlnet = FluxControlNetModel.from_pretrained( | |
args.output_dir, torch_dtype=torch.bfloat16, variant=args.save_weight_dtype | |
) | |
pipeline = FluxControlNetPipeline.from_pretrained( | |
args.pretrained_model_name_or_path, | |
controlnet=flux_controlnet, | |
transformer=flux_transformer, | |
torch_dtype=torch.bfloat16, | |
) | |
pipeline.to(accelerator.device) | |
pipeline.set_progress_bar_config(disable=True) | |
if args.enable_xformers_memory_efficient_attention: | |
pipeline.enable_xformers_memory_efficient_attention() | |
if args.seed is None: | |
generator = None | |
else: | |
generator = torch.Generator(device=accelerator.device).manual_seed(args.seed) | |
if len(args.validation_image) == len(args.validation_prompt): | |
validation_images = args.validation_image | |
validation_prompts = args.validation_prompt | |
elif len(args.validation_image) == 1: | |
validation_images = args.validation_image * len(args.validation_prompt) | |
validation_prompts = args.validation_prompt | |
elif len(args.validation_prompt) == 1: | |
validation_images = args.validation_image | |
validation_prompts = args.validation_prompt * len(args.validation_image) | |
else: | |
raise ValueError( | |
"number of `args.validation_image` and `args.validation_prompt` should be checked in `parse_args`" | |
) | |
image_logs = [] | |
if is_final_validation or torch.backends.mps.is_available(): | |
autocast_ctx = nullcontext() | |
else: | |
autocast_ctx = torch.autocast(accelerator.device.type) | |
for validation_prompt, validation_image in zip(validation_prompts, validation_images): | |
from diffusers.utils import load_image | |
validation_image = load_image(validation_image) | |
# maybe need to inference on 1024 to get a good image | |
validation_image = validation_image.resize((args.resolution, args.resolution)) | |
images = [] | |
# pre calculate prompt embeds, pooled prompt embeds, text ids because t5 does not support autocast | |
prompt_embeds, pooled_prompt_embeds, text_ids = pipeline.encode_prompt( | |
validation_prompt, prompt_2=validation_prompt | |
) | |
for _ in range(args.num_validation_images): | |
with autocast_ctx: | |
# need to fix in pipeline_flux_controlnet | |
image = pipeline( | |
prompt_embeds=prompt_embeds, | |
pooled_prompt_embeds=pooled_prompt_embeds, | |
control_image=validation_image, | |
num_inference_steps=28, | |
controlnet_conditioning_scale=0.7, | |
guidance_scale=3.5, | |
generator=generator, | |
).images[0] | |
image = image.resize((args.resolution, args.resolution)) | |
images.append(image) | |
image_logs.append( | |
{"validation_image": validation_image, "images": images, "validation_prompt": validation_prompt} | |
) | |
tracker_key = "test" if is_final_validation else "validation" | |
for tracker in accelerator.trackers: | |
if tracker.name == "tensorboard": | |
for log in image_logs: | |
images = log["images"] | |
validation_prompt = log["validation_prompt"] | |
validation_image = log["validation_image"] | |
formatted_images = [] | |
formatted_images.append(np.asarray(validation_image)) | |
for image in images: | |
formatted_images.append(np.asarray(image)) | |
formatted_images = np.stack(formatted_images) | |
tracker.writer.add_images(validation_prompt, formatted_images, step, dataformats="NHWC") | |
elif tracker.name == "wandb": | |
formatted_images = [] | |
for log in image_logs: | |
images = log["images"] | |
validation_prompt = log["validation_prompt"] | |
validation_image = log["validation_image"] | |
formatted_images.append(wandb.Image(validation_image, caption="Controlnet conditioning")) | |
for image in images: | |
image = wandb.Image(image, caption=validation_prompt) | |
formatted_images.append(image) | |
tracker.log({tracker_key: formatted_images}) | |
else: | |
logger.warning(f"image logging not implemented for {tracker.name}") | |
del pipeline | |
free_memory() | |
return image_logs | |
def save_model_card(repo_id: str, image_logs=None, base_model=str, repo_folder=None): | |
img_str = "" | |
if image_logs is not None: | |
img_str = "You can find some example images below.\n\n" | |
for i, log in enumerate(image_logs): | |
images = log["images"] | |
validation_prompt = log["validation_prompt"] | |
validation_image = log["validation_image"] | |
validation_image.save(os.path.join(repo_folder, "image_control.png")) | |
img_str += f"prompt: {validation_prompt}\n" | |
images = [validation_image] + images | |
make_image_grid(images, 1, len(images)).save(os.path.join(repo_folder, f"images_{i}.png")) | |
img_str += f"\n" | |
model_description = f""" | |
# controlnet-{repo_id} | |
These are controlnet weights trained on {base_model} with new type of conditioning. | |
{img_str} | |
## License | |
Please adhere to the licensing terms as described [here](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md) | |
""" | |
model_card = load_or_create_model_card( | |
repo_id_or_path=repo_id, | |
from_training=True, | |
license="other", | |
base_model=base_model, | |
model_description=model_description, | |
inference=True, | |
) | |
tags = [ | |
"flux", | |
"flux-diffusers", | |
"text-to-image", | |
"diffusers", | |
"controlnet", | |
"diffusers-training", | |
] | |
model_card = populate_model_card(model_card, tags=tags) | |
model_card.save(os.path.join(repo_folder, "README.md")) | |
def parse_args(input_args=None): | |
parser = argparse.ArgumentParser(description="Simple example of a ControlNet training script.") | |
parser.add_argument( | |
"--pretrained_model_name_or_path", | |
type=str, | |
default=None, | |
required=True, | |
help="Path to pretrained model or model identifier from huggingface.co/models.", | |
) | |
parser.add_argument( | |
"--pretrained_vae_model_name_or_path", | |
type=str, | |
default=None, | |
help="Path to an improved VAE to stabilize training. For more details check out: https://github.com/huggingface/diffusers/pull/4038.", | |
) | |
parser.add_argument( | |
"--controlnet_model_name_or_path", | |
type=str, | |
default=None, | |
help="Path to pretrained controlnet model or model identifier from huggingface.co/models." | |
" If not specified controlnet weights are initialized from unet.", | |
) | |
parser.add_argument( | |
"--variant", | |
type=str, | |
default=None, | |
help="Variant of the model files of the pretrained model identifier from huggingface.co/models, 'e.g.' fp16", | |
) | |
parser.add_argument( | |
"--revision", | |
type=str, | |
default=None, | |
required=False, | |
help="Revision of pretrained model identifier from huggingface.co/models.", | |
) | |
parser.add_argument( | |
"--tokenizer_name", | |
type=str, | |
default=None, | |
help="Pretrained tokenizer name or path if not the same as model_name", | |
) | |
parser.add_argument( | |
"--output_dir", | |
type=str, | |
default="controlnet-model", | |
help="The output directory where the model predictions and checkpoints will be written.", | |
) | |
parser.add_argument( | |
"--cache_dir", | |
type=str, | |
default=None, | |
help="The directory where the downloaded models and datasets will be stored.", | |
) | |
parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.") | |
parser.add_argument( | |
"--resolution", | |
type=int, | |
default=512, | |
help=( | |
"The resolution for input images, all the images in the train/validation dataset will be resized to this" | |
" resolution" | |
), | |
) | |
parser.add_argument( | |
"--crops_coords_top_left_h", | |
type=int, | |
default=0, | |
help=("Coordinate for (the height) to be included in the crop coordinate embeddings needed by SDXL UNet."), | |
) | |
parser.add_argument( | |
"--crops_coords_top_left_w", | |
type=int, | |
default=0, | |
help=("Coordinate for (the height) to be included in the crop coordinate embeddings needed by SDXL UNet."), | |
) | |
parser.add_argument( | |
"--train_batch_size", type=int, default=4, help="Batch size (per device) for the training dataloader." | |
) | |
parser.add_argument("--num_train_epochs", type=int, default=1) | |
parser.add_argument( | |
"--max_train_steps", | |
type=int, | |
default=None, | |
help="Total number of training steps to perform. If provided, overrides num_train_epochs.", | |
) | |
parser.add_argument( | |
"--checkpointing_steps", | |
type=int, | |
default=500, | |
help=( | |
"Save a checkpoint of the training state every X updates. Checkpoints can be used for resuming training via `--resume_from_checkpoint`. " | |
"In the case that the checkpoint is better than the final trained model, the checkpoint can also be used for inference." | |
"Using a checkpoint for inference requires separate loading of the original pipeline and the individual checkpointed model components." | |
"See https://huggingface.co/docs/diffusers/main/en/training/dreambooth#performing-inference-using-a-saved-checkpoint for step by step" | |
"instructions." | |
), | |
) | |
parser.add_argument( | |
"--checkpoints_total_limit", | |
type=int, | |
default=None, | |
help=("Max number of checkpoints to store."), | |
) | |
parser.add_argument( | |
"--resume_from_checkpoint", | |
type=str, | |
default=None, | |
help=( | |
"Whether training should be resumed from a previous checkpoint. Use a path saved by" | |
' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.' | |
), | |
) | |
parser.add_argument( | |
"--gradient_accumulation_steps", | |
type=int, | |
default=1, | |
help="Number of updates steps to accumulate before performing a backward/update pass.", | |
) | |
parser.add_argument( | |
"--gradient_checkpointing", | |
action="store_true", | |
help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.", | |
) | |
parser.add_argument( | |
"--learning_rate", | |
type=float, | |
default=5e-6, | |
help="Initial learning rate (after the potential warmup period) to use.", | |
) | |
parser.add_argument( | |
"--scale_lr", | |
action="store_true", | |
default=False, | |
help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.", | |
) | |
parser.add_argument( | |
"--lr_scheduler", | |
type=str, | |
default="constant", | |
help=( | |
'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",' | |
' "constant", "constant_with_warmup"]' | |
), | |
) | |
parser.add_argument( | |
"--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler." | |
) | |
parser.add_argument( | |
"--lr_num_cycles", | |
type=int, | |
default=1, | |
help="Number of hard resets of the lr in cosine_with_restarts scheduler.", | |
) | |
parser.add_argument("--lr_power", type=float, default=1.0, help="Power factor of the polynomial scheduler.") | |
parser.add_argument( | |
"--use_8bit_adam", action="store_true", help="Whether or not to use 8-bit Adam from bitsandbytes." | |
) | |
parser.add_argument( | |
"--use_adafactor", | |
action="store_true", | |
help=( | |
"Adafactor is a stochastic optimization method based on Adam that reduces memory usage while retaining" | |
"the empirical benefits of adaptivity. This is achieved through maintaining a factored representation " | |
"of the squared gradient accumulator across training steps." | |
), | |
) | |
parser.add_argument( | |
"--dataloader_num_workers", | |
type=int, | |
default=0, | |
help=( | |
"Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process." | |
), | |
) | |
parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.") | |
parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.") | |
parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.") | |
parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer") | |
parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") | |
parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.") | |
parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.") | |
parser.add_argument( | |
"--hub_model_id", | |
type=str, | |
default=None, | |
help="The name of the repository to keep in sync with the local `output_dir`.", | |
) | |
parser.add_argument( | |
"--logging_dir", | |
type=str, | |
default="logs", | |
help=( | |
"[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to" | |
" *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***." | |
), | |
) | |
parser.add_argument( | |
"--allow_tf32", | |
action="store_true", | |
help=( | |
"Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see" | |
" https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices" | |
), | |
) | |
parser.add_argument( | |
"--report_to", | |
type=str, | |
default="tensorboard", | |
help=( | |
'The integration to report the results and logs to. Supported platforms are `"tensorboard"`' | |
' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.' | |
), | |
) | |
parser.add_argument( | |
"--mixed_precision", | |
type=str, | |
default=None, | |
choices=["no", "fp16", "bf16"], | |
help=( | |
"Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >=" | |
" 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the" | |
" flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config." | |
), | |
) | |
parser.add_argument( | |
"--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers." | |
) | |
parser.add_argument( | |
"--enable_npu_flash_attention", action="store_true", help="Whether or not to use npu flash attention." | |
) | |
parser.add_argument( | |
"--set_grads_to_none", | |
action="store_true", | |
help=( | |
"Save more memory by using setting grads to None instead of zero. Be aware, that this changes certain" | |
" behaviors, so disable this argument if it causes any problems. More info:" | |
" https://pytorch.org/docs/stable/generated/torch.optim.Optimizer.zero_grad.html" | |
), | |
) | |
parser.add_argument( | |
"--dataset_name", | |
type=str, | |
default=None, | |
help=( | |
"The name of the Dataset (from the HuggingFace hub) to train on (could be your own, possibly private," | |
" dataset). It can also be a path pointing to a local copy of a dataset in your filesystem," | |
" or to a folder containing files that 🤗 Datasets can understand." | |
), | |
) | |
parser.add_argument( | |
"--dataset_config_name", | |
type=str, | |
default=None, | |
help="The config of the Dataset, leave as None if there's only one config.", | |
) | |
parser.add_argument( | |
"--image_column", type=str, default="image", help="The column of the dataset containing the target image." | |
) | |
parser.add_argument( | |
"--conditioning_image_column", | |
type=str, | |
default="conditioning_image", | |
help="The column of the dataset containing the controlnet conditioning image.", | |
) | |
parser.add_argument( | |
"--caption_column", | |
type=str, | |
default="text", | |
help="The column of the dataset containing a caption or a list of captions.", | |
) | |
parser.add_argument( | |
"--max_train_samples", | |
type=int, | |
default=None, | |
help=( | |
"For debugging purposes or quicker training, truncate the number of training examples to this " | |
"value if set." | |
), | |
) | |
parser.add_argument( | |
"--proportion_empty_prompts", | |
type=float, | |
default=0, | |
help="Proportion of image prompts to be replaced with empty strings. Defaults to 0 (no prompt replacement).", | |
) | |
parser.add_argument( | |
"--validation_prompt", | |
type=str, | |
default=None, | |
nargs="+", | |
help=( | |
"A set of prompts evaluated every `--validation_steps` and logged to `--report_to`." | |
" Provide either a matching number of `--validation_image`s, a single `--validation_image`" | |
" to be used with all prompts, or a single prompt that will be used with all `--validation_image`s." | |
), | |
) | |
parser.add_argument( | |
"--validation_image", | |
type=str, | |
default=None, | |
nargs="+", | |
help=( | |
"A set of paths to the controlnet conditioning image be evaluated every `--validation_steps`" | |
" and logged to `--report_to`. Provide either a matching number of `--validation_prompt`s, a" | |
" a single `--validation_prompt` to be used with all `--validation_image`s, or a single" | |
" `--validation_image` that will be used with all `--validation_prompt`s." | |
), | |
) | |
parser.add_argument( | |
"--num_double_layers", | |
type=int, | |
default=4, | |
help="Number of double layers in the controlnet (default: 4).", | |
) | |
parser.add_argument( | |
"--num_single_layers", | |
type=int, | |
default=4, | |
help="Number of single layers in the controlnet (default: 4).", | |
) | |
parser.add_argument( | |
"--num_validation_images", | |
type=int, | |
default=2, | |
help="Number of images to be generated for each `--validation_image`, `--validation_prompt` pair", | |
) | |
parser.add_argument( | |
"--validation_steps", | |
type=int, | |
default=100, | |
help=( | |
"Run validation every X steps. Validation consists of running the prompt" | |
" `args.validation_prompt` multiple times: `args.num_validation_images`" | |
" and logging the images." | |
), | |
) | |
parser.add_argument( | |
"--tracker_project_name", | |
type=str, | |
default="flux_train_controlnet", | |
help=( | |
"The `project_name` argument passed to Accelerator.init_trackers for" | |
" more information see https://huggingface.co/docs/accelerate/v0.17.0/en/package_reference/accelerator#accelerate.Accelerator" | |
), | |
) | |
parser.add_argument( | |
"--jsonl_for_train", | |
type=str, | |
default=None, | |
help="Path to the jsonl file containing the training data.", | |
) | |
parser.add_argument( | |
"--guidance_scale", | |
type=float, | |
default=3.5, | |
help="the guidance scale used for transformer.", | |
) | |
parser.add_argument( | |
"--save_weight_dtype", | |
type=str, | |
default="fp32", | |
choices=[ | |
"fp16", | |
"bf16", | |
"fp32", | |
], | |
help=("Preserve precision type according to selected weight"), | |
) | |
parser.add_argument( | |
"--weighting_scheme", | |
type=str, | |
default="logit_normal", | |
choices=["sigma_sqrt", "logit_normal", "mode", "cosmap", "none"], | |
help=('We default to the "none" weighting scheme for uniform sampling and uniform loss'), | |
) | |
parser.add_argument( | |
"--logit_mean", type=float, default=0.0, help="mean to use when using the `'logit_normal'` weighting scheme." | |
) | |
parser.add_argument( | |
"--logit_std", type=float, default=1.0, help="std to use when using the `'logit_normal'` weighting scheme." | |
) | |
parser.add_argument( | |
"--mode_scale", | |
type=float, | |
default=1.29, | |
help="Scale of mode weighting scheme. Only effective when using the `'mode'` as the `weighting_scheme`.", | |
) | |
parser.add_argument( | |
"--enable_model_cpu_offload", | |
action="store_true", | |
help="Enable model cpu offload and save memory.", | |
) | |
if input_args is not None: | |
args = parser.parse_args(input_args) | |
else: | |
args = parser.parse_args() | |
if args.dataset_name is None and args.jsonl_for_train is None: | |
raise ValueError("Specify either `--dataset_name` or `--jsonl_for_train`") | |
if args.dataset_name is not None and args.jsonl_for_train is not None: | |
raise ValueError("Specify only one of `--dataset_name` or `--jsonl_for_train`") | |
if args.proportion_empty_prompts < 0 or args.proportion_empty_prompts > 1: | |
raise ValueError("`--proportion_empty_prompts` must be in the range [0, 1].") | |
if args.validation_prompt is not None and args.validation_image is None: | |
raise ValueError("`--validation_image` must be set if `--validation_prompt` is set") | |
if args.validation_prompt is None and args.validation_image is not None: | |
raise ValueError("`--validation_prompt` must be set if `--validation_image` is set") | |
if ( | |
args.validation_image is not None | |
and args.validation_prompt is not None | |
and len(args.validation_image) != 1 | |
and len(args.validation_prompt) != 1 | |
and len(args.validation_image) != len(args.validation_prompt) | |
): | |
raise ValueError( | |
"Must provide either 1 `--validation_image`, 1 `--validation_prompt`," | |
" or the same number of `--validation_prompt`s and `--validation_image`s" | |
) | |
if args.resolution % 8 != 0: | |
raise ValueError( | |
"`--resolution` must be divisible by 8 for consistently sized encoded images between the VAE and the controlnet encoder." | |
) | |
return args | |
def get_train_dataset(args, accelerator): | |
dataset = None | |
if args.dataset_name is not None: | |
# Downloading and loading a dataset from the hub. | |
dataset = load_dataset( | |
args.dataset_name, | |
args.dataset_config_name, | |
cache_dir=args.cache_dir, | |
) | |
if args.jsonl_for_train is not None: | |
# load from json | |
dataset = load_dataset("json", data_files=args.jsonl_for_train, cache_dir=args.cache_dir) | |
dataset = dataset.flatten_indices() | |
# Preprocessing the datasets. | |
# We need to tokenize inputs and targets. | |
column_names = dataset["train"].column_names | |
# 6. Get the column names for input/target. | |
if args.image_column is None: | |
image_column = column_names[0] | |
logger.info(f"image column defaulting to {image_column}") | |
else: | |
image_column = args.image_column | |
if image_column not in column_names: | |
raise ValueError( | |
f"`--image_column` value '{args.image_column}' not found in dataset columns. Dataset columns are: {', '.join(column_names)}" | |
) | |
if args.caption_column is None: | |
caption_column = column_names[1] | |
logger.info(f"caption column defaulting to {caption_column}") | |
else: | |
caption_column = args.caption_column | |
if caption_column not in column_names: | |
raise ValueError( | |
f"`--caption_column` value '{args.caption_column}' not found in dataset columns. Dataset columns are: {', '.join(column_names)}" | |
) | |
if args.conditioning_image_column is None: | |
conditioning_image_column = column_names[2] | |
logger.info(f"conditioning image column defaulting to {conditioning_image_column}") | |
else: | |
conditioning_image_column = args.conditioning_image_column | |
if conditioning_image_column not in column_names: | |
raise ValueError( | |
f"`--conditioning_image_column` value '{args.conditioning_image_column}' not found in dataset columns. Dataset columns are: {', '.join(column_names)}" | |
) | |
with accelerator.main_process_first(): | |
train_dataset = dataset["train"].shuffle(seed=args.seed) | |
if args.max_train_samples is not None: | |
train_dataset = train_dataset.select(range(args.max_train_samples)) | |
return train_dataset | |
def prepare_train_dataset(dataset, accelerator): | |
image_transforms = transforms.Compose( | |
[ | |
transforms.Resize(args.resolution, interpolation=transforms.InterpolationMode.BILINEAR), | |
transforms.CenterCrop(args.resolution), | |
transforms.ToTensor(), | |
transforms.Normalize([0.5], [0.5]), | |
] | |
) | |
conditioning_image_transforms = transforms.Compose( | |
[ | |
transforms.Resize(args.resolution, interpolation=transforms.InterpolationMode.BILINEAR), | |
transforms.CenterCrop(args.resolution), | |
transforms.ToTensor(), | |
transforms.Normalize([0.5], [0.5]), | |
] | |
) | |
def preprocess_train(examples): | |
images = [ | |
(image.convert("RGB") if not isinstance(image, str) else Image.open(image).convert("RGB")) | |
for image in examples[args.image_column] | |
] | |
images = [image_transforms(image) for image in images] | |
conditioning_images = [ | |
(image.convert("RGB") if not isinstance(image, str) else Image.open(image).convert("RGB")) | |
for image in examples[args.conditioning_image_column] | |
] | |
conditioning_images = [conditioning_image_transforms(image) for image in conditioning_images] | |
examples["pixel_values"] = images | |
examples["conditioning_pixel_values"] = conditioning_images | |
return examples | |
with accelerator.main_process_first(): | |
dataset = dataset.with_transform(preprocess_train) | |
return dataset | |
def collate_fn(examples): | |
pixel_values = torch.stack([example["pixel_values"] for example in examples]) | |
pixel_values = pixel_values.to(memory_format=torch.contiguous_format).float() | |
conditioning_pixel_values = torch.stack([example["conditioning_pixel_values"] for example in examples]) | |
conditioning_pixel_values = conditioning_pixel_values.to(memory_format=torch.contiguous_format).float() | |
prompt_ids = torch.stack([torch.tensor(example["prompt_embeds"]) for example in examples]) | |
pooled_prompt_embeds = torch.stack([torch.tensor(example["pooled_prompt_embeds"]) for example in examples]) | |
text_ids = torch.stack([torch.tensor(example["text_ids"]) for example in examples]) | |
return { | |
"pixel_values": pixel_values, | |
"conditioning_pixel_values": conditioning_pixel_values, | |
"prompt_ids": prompt_ids, | |
"unet_added_conditions": {"pooled_prompt_embeds": pooled_prompt_embeds, "time_ids": text_ids}, | |
} | |
def main(args): | |
if args.report_to == "wandb" and args.hub_token is not None: | |
raise ValueError( | |
"You cannot use both --report_to=wandb and --hub_token due to a security risk of exposing your token." | |
" Please use `huggingface-cli login` to authenticate with the Hub." | |
) | |
logging_out_dir = Path(args.output_dir, args.logging_dir) | |
if torch.backends.mps.is_available() and args.mixed_precision == "bf16": | |
# due to pytorch#99272, MPS does not yet support bfloat16. | |
raise ValueError( | |
"Mixed precision training with bfloat16 is not supported on MPS. Please use fp16 (recommended) or fp32 instead." | |
) | |
accelerator_project_config = ProjectConfiguration(project_dir=args.output_dir, logging_dir=str(logging_out_dir)) | |
accelerator = Accelerator( | |
gradient_accumulation_steps=args.gradient_accumulation_steps, | |
mixed_precision=args.mixed_precision, | |
log_with=args.report_to, | |
project_config=accelerator_project_config, | |
) | |
# Disable AMP for MPS. A technique for accelerating machine learning computations on iOS and macOS devices. | |
if torch.backends.mps.is_available(): | |
print("MPS is enabled. Disabling AMP.") | |
accelerator.native_amp = False | |
# Make one log on every process with the configuration for debugging. | |
logging.basicConfig( | |
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", | |
datefmt="%m/%d/%Y %H:%M:%S", | |
# DEBUG, INFO, WARNING, ERROR, CRITICAL | |
level=logging.INFO, | |
) | |
logger.info(accelerator.state, main_process_only=False) | |
if accelerator.is_local_main_process: | |
transformers.utils.logging.set_verbosity_warning() | |
diffusers.utils.logging.set_verbosity_info() | |
else: | |
transformers.utils.logging.set_verbosity_error() | |
diffusers.utils.logging.set_verbosity_error() | |
# If passed along, set the training seed now. | |
if args.seed is not None: | |
set_seed(args.seed) | |
# Handle the repository creation | |
if accelerator.is_main_process: | |
if args.output_dir is not None: | |
os.makedirs(args.output_dir, exist_ok=True) | |
if args.push_to_hub: | |
repo_id = create_repo( | |
repo_id=args.hub_model_id or Path(args.output_dir).name, exist_ok=True, token=args.hub_token | |
).repo_id | |
# Load the tokenizers | |
# load clip tokenizer | |
tokenizer_one = AutoTokenizer.from_pretrained( | |
args.pretrained_model_name_or_path, | |
subfolder="tokenizer", | |
revision=args.revision, | |
) | |
# load t5 tokenizer | |
tokenizer_two = AutoTokenizer.from_pretrained( | |
args.pretrained_model_name_or_path, | |
subfolder="tokenizer_2", | |
revision=args.revision, | |
) | |
# load clip text encoder | |
text_encoder_one = CLIPTextModel.from_pretrained( | |
args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision, variant=args.variant | |
) | |
# load t5 text encoder | |
text_encoder_two = T5EncoderModel.from_pretrained( | |
args.pretrained_model_name_or_path, subfolder="text_encoder_2", revision=args.revision, variant=args.variant | |
) | |
vae = AutoencoderKL.from_pretrained( | |
args.pretrained_model_name_or_path, | |
subfolder="vae", | |
revision=args.revision, | |
variant=args.variant, | |
) | |
flux_transformer = FluxTransformer2DModel.from_pretrained( | |
args.pretrained_model_name_or_path, | |
subfolder="transformer", | |
revision=args.revision, | |
variant=args.variant, | |
) | |
if args.controlnet_model_name_or_path: | |
logger.info("Loading existing controlnet weights") | |
flux_controlnet = FluxControlNetModel.from_pretrained(args.controlnet_model_name_or_path) | |
else: | |
logger.info("Initializing controlnet weights from transformer") | |
# we can define the num_layers, num_single_layers, | |
flux_controlnet = FluxControlNetModel.from_transformer( | |
flux_transformer, | |
attention_head_dim=flux_transformer.config["attention_head_dim"], | |
num_attention_heads=flux_transformer.config["num_attention_heads"], | |
num_layers=args.num_double_layers, | |
num_single_layers=args.num_single_layers, | |
) | |
logger.info("all models loaded successfully") | |
noise_scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained( | |
args.pretrained_model_name_or_path, | |
subfolder="scheduler", | |
) | |
noise_scheduler_copy = copy.deepcopy(noise_scheduler) | |
vae.requires_grad_(False) | |
flux_transformer.requires_grad_(False) | |
text_encoder_one.requires_grad_(False) | |
text_encoder_two.requires_grad_(False) | |
flux_controlnet.train() | |
# use some pipeline function | |
flux_controlnet_pipeline = FluxControlNetPipeline( | |
scheduler=noise_scheduler, | |
vae=vae, | |
text_encoder=text_encoder_one, | |
tokenizer=tokenizer_one, | |
text_encoder_2=text_encoder_two, | |
tokenizer_2=tokenizer_two, | |
transformer=flux_transformer, | |
controlnet=flux_controlnet, | |
) | |
if args.enable_model_cpu_offload: | |
flux_controlnet_pipeline.enable_model_cpu_offload() | |
else: | |
flux_controlnet_pipeline.to(accelerator.device) | |
def unwrap_model(model): | |
model = accelerator.unwrap_model(model) | |
model = model._orig_mod if is_compiled_module(model) else model | |
return model | |
# `accelerate` 0.16.0 will have better support for customized saving | |
if version.parse(accelerate.__version__) >= version.parse("0.16.0"): | |
# create custom saving & loading hooks so that `accelerator.save_state(...)` serializes in a nice format | |
def save_model_hook(models, weights, output_dir): | |
if accelerator.is_main_process: | |
i = len(weights) - 1 | |
while len(weights) > 0: | |
weights.pop() | |
model = models[i] | |
sub_dir = "flux_controlnet" | |
model.save_pretrained(os.path.join(output_dir, sub_dir)) | |
i -= 1 | |
def load_model_hook(models, input_dir): | |
while len(models) > 0: | |
# pop models so that they are not loaded again | |
model = models.pop() | |
# load diffusers style into model | |
load_model = FluxControlNetModel.from_pretrained(input_dir, subfolder="flux_controlnet") | |
model.register_to_config(**load_model.config) | |
model.load_state_dict(load_model.state_dict()) | |
del load_model | |
accelerator.register_save_state_pre_hook(save_model_hook) | |
accelerator.register_load_state_pre_hook(load_model_hook) | |
if args.enable_npu_flash_attention: | |
if is_torch_npu_available(): | |
logger.info("npu flash attention enabled.") | |
flux_transformer.enable_npu_flash_attention() | |
else: | |
raise ValueError("npu flash attention requires torch_npu extensions and is supported only on npu devices.") | |
if args.enable_xformers_memory_efficient_attention: | |
if is_xformers_available(): | |
import xformers | |
xformers_version = version.parse(xformers.__version__) | |
if xformers_version == version.parse("0.0.16"): | |
logger.warning( | |
"xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details." | |
) | |
flux_transformer.enable_xformers_memory_efficient_attention() | |
flux_controlnet.enable_xformers_memory_efficient_attention() | |
else: | |
raise ValueError("xformers is not available. Make sure it is installed correctly") | |
if args.gradient_checkpointing: | |
flux_transformer.enable_gradient_checkpointing() | |
flux_controlnet.enable_gradient_checkpointing() | |
# Check that all trainable models are in full precision | |
low_precision_error_string = ( | |
" Please make sure to always have all model weights in full float32 precision when starting training - even if" | |
" doing mixed precision training, copy of the weights should still be float32." | |
) | |
if unwrap_model(flux_controlnet).dtype != torch.float32: | |
raise ValueError( | |
f"Controlnet loaded as datatype {unwrap_model(flux_controlnet).dtype}. {low_precision_error_string}" | |
) | |
# Enable TF32 for faster training on Ampere GPUs, | |
# cf https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices | |
if args.allow_tf32: | |
torch.backends.cuda.matmul.allow_tf32 = True | |
if args.scale_lr: | |
args.learning_rate = ( | |
args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes | |
) | |
# Use 8-bit Adam for lower memory usage or to fine-tune the model in 16GB GPUs | |
if args.use_8bit_adam: | |
try: | |
import bitsandbytes as bnb | |
except ImportError: | |
raise ImportError( | |
"To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`." | |
) | |
optimizer_class = bnb.optim.AdamW8bit | |
else: | |
optimizer_class = torch.optim.AdamW | |
# Optimizer creation | |
params_to_optimize = flux_controlnet.parameters() | |
# use adafactor optimizer to save gpu memory | |
if args.use_adafactor: | |
from transformers import Adafactor | |
optimizer = Adafactor( | |
params_to_optimize, | |
lr=args.learning_rate, | |
scale_parameter=False, | |
relative_step=False, | |
# warmup_init=True, | |
weight_decay=args.adam_weight_decay, | |
) | |
else: | |
optimizer = optimizer_class( | |
params_to_optimize, | |
lr=args.learning_rate, | |
betas=(args.adam_beta1, args.adam_beta2), | |
weight_decay=args.adam_weight_decay, | |
eps=args.adam_epsilon, | |
) | |
# For mixed precision training we cast the text_encoder and vae weights to half-precision | |
# as these models are only used for inference, keeping weights in full precision is not required. | |
weight_dtype = torch.float32 | |
if accelerator.mixed_precision == "fp16": | |
weight_dtype = torch.float16 | |
elif accelerator.mixed_precision == "bf16": | |
weight_dtype = torch.bfloat16 | |
vae.to(accelerator.device, dtype=weight_dtype) | |
flux_transformer.to(accelerator.device, dtype=weight_dtype) | |
def compute_embeddings(batch, proportion_empty_prompts, flux_controlnet_pipeline, weight_dtype, is_train=True): | |
prompt_batch = batch[args.caption_column] | |
captions = [] | |
for caption in prompt_batch: | |
if random.random() < proportion_empty_prompts: | |
captions.append("") | |
elif isinstance(caption, str): | |
captions.append(caption) | |
elif isinstance(caption, (list, np.ndarray)): | |
# take a random caption if there are multiple | |
captions.append(random.choice(caption) if is_train else caption[0]) | |
prompt_batch = captions | |
prompt_embeds, pooled_prompt_embeds, text_ids = flux_controlnet_pipeline.encode_prompt( | |
prompt_batch, prompt_2=prompt_batch | |
) | |
prompt_embeds = prompt_embeds.to(dtype=weight_dtype) | |
pooled_prompt_embeds = pooled_prompt_embeds.to(dtype=weight_dtype) | |
text_ids = text_ids.to(dtype=weight_dtype) | |
# text_ids [512,3] to [bs,512,3] | |
text_ids = text_ids.unsqueeze(0).expand(prompt_embeds.shape[0], -1, -1) | |
return {"prompt_embeds": prompt_embeds, "pooled_prompt_embeds": pooled_prompt_embeds, "text_ids": text_ids} | |
train_dataset = get_train_dataset(args, accelerator) | |
text_encoders = [text_encoder_one, text_encoder_two] | |
tokenizers = [tokenizer_one, tokenizer_two] | |
compute_embeddings_fn = functools.partial( | |
compute_embeddings, | |
flux_controlnet_pipeline=flux_controlnet_pipeline, | |
proportion_empty_prompts=args.proportion_empty_prompts, | |
weight_dtype=weight_dtype, | |
) | |
with accelerator.main_process_first(): | |
from datasets.fingerprint import Hasher | |
# fingerprint used by the cache for the other processes to load the result | |
# details: https://github.com/huggingface/diffusers/pull/4038#discussion_r1266078401 | |
new_fingerprint = Hasher.hash(args) | |
train_dataset = train_dataset.map( | |
compute_embeddings_fn, batched=True, new_fingerprint=new_fingerprint, batch_size=50 | |
) | |
del text_encoders, tokenizers, text_encoder_one, text_encoder_two, tokenizer_one, tokenizer_two | |
free_memory() | |
# Then get the training dataset ready to be passed to the dataloader. | |
train_dataset = prepare_train_dataset(train_dataset, accelerator) | |
train_dataloader = torch.utils.data.DataLoader( | |
train_dataset, | |
shuffle=True, | |
collate_fn=collate_fn, | |
batch_size=args.train_batch_size, | |
num_workers=args.dataloader_num_workers, | |
) | |
# Scheduler and math around the number of training steps. | |
# Check the PR https://github.com/huggingface/diffusers/pull/8312 for detailed explanation. | |
if args.max_train_steps is None: | |
len_train_dataloader_after_sharding = math.ceil(len(train_dataloader) / accelerator.num_processes) | |
num_update_steps_per_epoch = math.ceil(len_train_dataloader_after_sharding / args.gradient_accumulation_steps) | |
num_training_steps_for_scheduler = ( | |
args.num_train_epochs * num_update_steps_per_epoch * accelerator.num_processes | |
) | |
else: | |
num_training_steps_for_scheduler = args.max_train_steps * accelerator.num_processes | |
lr_scheduler = get_scheduler( | |
args.lr_scheduler, | |
optimizer=optimizer, | |
num_warmup_steps=args.lr_warmup_steps * accelerator.num_processes, | |
num_training_steps=args.max_train_steps * accelerator.num_processes, | |
num_cycles=args.lr_num_cycles, | |
power=args.lr_power, | |
) | |
# Prepare everything with our `accelerator`. | |
flux_controlnet, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( | |
flux_controlnet, optimizer, train_dataloader, lr_scheduler | |
) | |
# We need to recalculate our total training steps as the size of the training dataloader may have changed. | |
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) | |
if args.max_train_steps is None: | |
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch | |
if num_training_steps_for_scheduler != args.max_train_steps * accelerator.num_processes: | |
logger.warning( | |
f"The length of the 'train_dataloader' after 'accelerator.prepare' ({len(train_dataloader)}) does not match " | |
f"the expected length ({len_train_dataloader_after_sharding}) when the learning rate scheduler was created. " | |
f"This inconsistency may result in the learning rate scheduler not functioning properly." | |
) | |
# Afterwards we recalculate our number of training epochs | |
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) | |
# We need to initialize the trackers we use, and also store our configuration. | |
# The trackers initializes automatically on the main process. | |
if accelerator.is_main_process: | |
tracker_config = dict(vars(args)) | |
# tensorboard cannot handle list types for config | |
tracker_config.pop("validation_prompt") | |
tracker_config.pop("validation_image") | |
accelerator.init_trackers(args.tracker_project_name, config=tracker_config) | |
# Train! | |
total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps | |
logger.info("***** Running training *****") | |
logger.info(f" Num examples = {len(train_dataset)}") | |
logger.info(f" Num batches each epoch = {len(train_dataloader)}") | |
logger.info(f" Num Epochs = {args.num_train_epochs}") | |
logger.info(f" Instantaneous batch size per device = {args.train_batch_size}") | |
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}") | |
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}") | |
logger.info(f" Total optimization steps = {args.max_train_steps}") | |
global_step = 0 | |
first_epoch = 0 | |
# Potentially load in the weights and states from a previous save | |
if args.resume_from_checkpoint: | |
if args.resume_from_checkpoint != "latest": | |
path = os.path.basename(args.resume_from_checkpoint) | |
else: | |
# Get the most recent checkpoint | |
dirs = os.listdir(args.output_dir) | |
dirs = [d for d in dirs if d.startswith("checkpoint")] | |
dirs = sorted(dirs, key=lambda x: int(x.split("-")[1])) | |
path = dirs[-1] if len(dirs) > 0 else None | |
if path is None: | |
accelerator.print( | |
f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run." | |
) | |
args.resume_from_checkpoint = None | |
initial_global_step = 0 | |
else: | |
accelerator.print(f"Resuming from checkpoint {path}") | |
accelerator.load_state(os.path.join(args.output_dir, path)) | |
global_step = int(path.split("-")[1]) | |
initial_global_step = global_step | |
first_epoch = global_step // num_update_steps_per_epoch | |
else: | |
initial_global_step = 0 | |
progress_bar = tqdm( | |
range(0, args.max_train_steps), | |
initial=initial_global_step, | |
desc="Steps", | |
# Only show the progress bar once on each machine. | |
disable=not accelerator.is_local_main_process, | |
) | |
def get_sigmas(timesteps, n_dim=4, dtype=torch.float32): | |
sigmas = noise_scheduler_copy.sigmas.to(device=accelerator.device, dtype=dtype) | |
schedule_timesteps = noise_scheduler_copy.timesteps.to(accelerator.device) | |
timesteps = timesteps.to(accelerator.device) | |
step_indices = [(schedule_timesteps == t).nonzero().item() for t in timesteps] | |
sigma = sigmas[step_indices].flatten() | |
while len(sigma.shape) < n_dim: | |
sigma = sigma.unsqueeze(-1) | |
return sigma | |
image_logs = None | |
for epoch in range(first_epoch, args.num_train_epochs): | |
for step, batch in enumerate(train_dataloader): | |
with accelerator.accumulate(flux_controlnet): | |
# Convert images to latent space | |
# vae encode | |
pixel_values = batch["pixel_values"].to(dtype=weight_dtype) | |
pixel_latents_tmp = vae.encode(pixel_values).latent_dist.sample() | |
pixel_latents_tmp = (pixel_latents_tmp - vae.config.shift_factor) * vae.config.scaling_factor | |
pixel_latents = FluxControlNetPipeline._pack_latents( | |
pixel_latents_tmp, | |
pixel_values.shape[0], | |
pixel_latents_tmp.shape[1], | |
pixel_latents_tmp.shape[2], | |
pixel_latents_tmp.shape[3], | |
) | |
control_values = batch["conditioning_pixel_values"].to(dtype=weight_dtype) | |
control_latents = vae.encode(control_values).latent_dist.sample() | |
control_latents = (control_latents - vae.config.shift_factor) * vae.config.scaling_factor | |
control_image = FluxControlNetPipeline._pack_latents( | |
control_latents, | |
control_values.shape[0], | |
control_latents.shape[1], | |
control_latents.shape[2], | |
control_latents.shape[3], | |
) | |
latent_image_ids = FluxControlNetPipeline._prepare_latent_image_ids( | |
batch_size=pixel_latents_tmp.shape[0], | |
height=pixel_latents_tmp.shape[2] // 2, | |
width=pixel_latents_tmp.shape[3] // 2, | |
device=pixel_values.device, | |
dtype=pixel_values.dtype, | |
) | |
bsz = pixel_latents.shape[0] | |
noise = torch.randn_like(pixel_latents).to(accelerator.device).to(dtype=weight_dtype) | |
# Sample a random timestep for each image | |
# for weighting schemes where we sample timesteps non-uniformly | |
u = compute_density_for_timestep_sampling( | |
weighting_scheme=args.weighting_scheme, | |
batch_size=bsz, | |
logit_mean=args.logit_mean, | |
logit_std=args.logit_std, | |
mode_scale=args.mode_scale, | |
) | |
indices = (u * noise_scheduler_copy.config.num_train_timesteps).long() | |
timesteps = noise_scheduler_copy.timesteps[indices].to(device=pixel_latents.device) | |
# Add noise according to flow matching. | |
sigmas = get_sigmas(timesteps, n_dim=pixel_latents.ndim, dtype=pixel_latents.dtype) | |
noisy_model_input = (1.0 - sigmas) * pixel_latents + sigmas * noise | |
# handle guidance | |
if flux_transformer.config.guidance_embeds: | |
guidance_vec = torch.full( | |
(noisy_model_input.shape[0],), | |
args.guidance_scale, | |
device=noisy_model_input.device, | |
dtype=weight_dtype, | |
) | |
else: | |
guidance_vec = None | |
controlnet_block_samples, controlnet_single_block_samples = flux_controlnet( | |
hidden_states=noisy_model_input, | |
controlnet_cond=control_image, | |
timestep=timesteps / 1000, | |
guidance=guidance_vec, | |
pooled_projections=batch["unet_added_conditions"]["pooled_prompt_embeds"].to(dtype=weight_dtype), | |
encoder_hidden_states=batch["prompt_ids"].to(dtype=weight_dtype), | |
txt_ids=batch["unet_added_conditions"]["time_ids"][0].to(dtype=weight_dtype), | |
img_ids=latent_image_ids, | |
return_dict=False, | |
) | |
noise_pred = flux_transformer( | |
hidden_states=noisy_model_input, | |
timestep=timesteps / 1000, | |
guidance=guidance_vec, | |
pooled_projections=batch["unet_added_conditions"]["pooled_prompt_embeds"].to(dtype=weight_dtype), | |
encoder_hidden_states=batch["prompt_ids"].to(dtype=weight_dtype), | |
controlnet_block_samples=[sample.to(dtype=weight_dtype) for sample in controlnet_block_samples] | |
if controlnet_block_samples is not None | |
else None, | |
controlnet_single_block_samples=[ | |
sample.to(dtype=weight_dtype) for sample in controlnet_single_block_samples | |
] | |
if controlnet_single_block_samples is not None | |
else None, | |
txt_ids=batch["unet_added_conditions"]["time_ids"][0].to(dtype=weight_dtype), | |
img_ids=latent_image_ids, | |
return_dict=False, | |
)[0] | |
loss = F.mse_loss(noise_pred.float(), (noise - pixel_latents).float(), reduction="mean") | |
accelerator.backward(loss) | |
# Check if the gradient of each model parameter contains NaN | |
for name, param in flux_controlnet.named_parameters(): | |
if param.grad is not None and torch.isnan(param.grad).any(): | |
logger.error(f"Gradient for {name} contains NaN!") | |
if accelerator.sync_gradients: | |
params_to_clip = flux_controlnet.parameters() | |
accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm) | |
optimizer.step() | |
lr_scheduler.step() | |
optimizer.zero_grad(set_to_none=args.set_grads_to_none) | |
# Checks if the accelerator has performed an optimization step behind the scenes | |
if accelerator.sync_gradients: | |
progress_bar.update(1) | |
global_step += 1 | |
# DeepSpeed requires saving weights on every device; saving weights only on the main process would cause issues. | |
if accelerator.distributed_type == DistributedType.DEEPSPEED or accelerator.is_main_process: | |
if global_step % args.checkpointing_steps == 0: | |
# _before_ saving state, check if this save would set us over the `checkpoints_total_limit` | |
if args.checkpoints_total_limit is not None: | |
checkpoints = os.listdir(args.output_dir) | |
checkpoints = [d for d in checkpoints if d.startswith("checkpoint")] | |
checkpoints = sorted(checkpoints, key=lambda x: int(x.split("-")[1])) | |
# before we save the new checkpoint, we need to have at _most_ `checkpoints_total_limit - 1` checkpoints | |
if len(checkpoints) >= args.checkpoints_total_limit: | |
num_to_remove = len(checkpoints) - args.checkpoints_total_limit + 1 | |
removing_checkpoints = checkpoints[0:num_to_remove] | |
logger.info( | |
f"{len(checkpoints)} checkpoints already exist, removing {len(removing_checkpoints)} checkpoints" | |
) | |
logger.info(f"removing checkpoints: {', '.join(removing_checkpoints)}") | |
for removing_checkpoint in removing_checkpoints: | |
removing_checkpoint = os.path.join(args.output_dir, removing_checkpoint) | |
shutil.rmtree(removing_checkpoint) | |
save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}") | |
accelerator.save_state(save_path) | |
logger.info(f"Saved state to {save_path}") | |
if args.validation_prompt is not None and global_step % args.validation_steps == 0: | |
image_logs = log_validation( | |
vae=vae, | |
flux_transformer=flux_transformer, | |
flux_controlnet=flux_controlnet, | |
args=args, | |
accelerator=accelerator, | |
weight_dtype=weight_dtype, | |
step=global_step, | |
) | |
logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]} | |
progress_bar.set_postfix(**logs) | |
accelerator.log(logs, step=global_step) | |
if global_step >= args.max_train_steps: | |
break | |
# Create the pipeline using using the trained modules and save it. | |
accelerator.wait_for_everyone() | |
if accelerator.is_main_process: | |
flux_controlnet = unwrap_model(flux_controlnet) | |
save_weight_dtype = torch.float32 | |
if args.save_weight_dtype == "fp16": | |
save_weight_dtype = torch.float16 | |
elif args.save_weight_dtype == "bf16": | |
save_weight_dtype = torch.bfloat16 | |
flux_controlnet.to(save_weight_dtype) | |
if args.save_weight_dtype != "fp32": | |
flux_controlnet.save_pretrained(args.output_dir, variant=args.save_weight_dtype) | |
else: | |
flux_controlnet.save_pretrained(args.output_dir) | |
# Run a final round of validation. | |
# Setting `vae`, `unet`, and `controlnet` to None to load automatically from `args.output_dir`. | |
image_logs = None | |
if args.validation_prompt is not None: | |
image_logs = log_validation( | |
vae=vae, | |
flux_transformer=flux_transformer, | |
flux_controlnet=None, | |
args=args, | |
accelerator=accelerator, | |
weight_dtype=weight_dtype, | |
step=global_step, | |
is_final_validation=True, | |
) | |
if args.push_to_hub: | |
save_model_card( | |
repo_id, | |
image_logs=image_logs, | |
base_model=args.pretrained_model_name_or_path, | |
repo_folder=args.output_dir, | |
) | |
upload_folder( | |
repo_id=repo_id, | |
folder_path=args.output_dir, | |
commit_message="End of training", | |
ignore_patterns=["step_*", "epoch_*"], | |
) | |
accelerator.end_training() | |
if __name__ == "__main__": | |
args = parse_args() | |
main(args) | |