Spaces:
Running
on
Zero
Running
on
Zero
import argparse | |
from contextlib import nullcontext | |
import safetensors.torch | |
from accelerate import init_empty_weights | |
from huggingface_hub import hf_hub_download | |
from diffusers.utils.import_utils import is_accelerate_available, is_transformers_available | |
if is_transformers_available(): | |
from transformers import CLIPVisionModelWithProjection | |
vision = True | |
else: | |
vision = False | |
""" | |
python scripts/convert_flux_xlabs_ipadapter_to_diffusers.py \ | |
--original_state_dict_repo_id "XLabs-AI/flux-ip-adapter" \ | |
--filename "flux-ip-adapter.safetensors" | |
--output_path "flux-ip-adapter-hf/" | |
""" | |
CTX = init_empty_weights if is_accelerate_available else nullcontext | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--original_state_dict_repo_id", default=None, type=str) | |
parser.add_argument("--filename", default="flux.safetensors", type=str) | |
parser.add_argument("--checkpoint_path", default=None, type=str) | |
parser.add_argument("--output_path", type=str) | |
parser.add_argument("--vision_pretrained_or_path", default="openai/clip-vit-large-patch14", type=str) | |
args = parser.parse_args() | |
def load_original_checkpoint(args): | |
if args.original_state_dict_repo_id is not None: | |
ckpt_path = hf_hub_download(repo_id=args.original_state_dict_repo_id, filename=args.filename) | |
elif args.checkpoint_path is not None: | |
ckpt_path = args.checkpoint_path | |
else: | |
raise ValueError(" please provide either `original_state_dict_repo_id` or a local `checkpoint_path`") | |
original_state_dict = safetensors.torch.load_file(ckpt_path) | |
return original_state_dict | |
def convert_flux_ipadapter_checkpoint_to_diffusers(original_state_dict, num_layers): | |
converted_state_dict = {} | |
# image_proj | |
## norm | |
converted_state_dict["image_proj.norm.weight"] = original_state_dict.pop("ip_adapter_proj_model.norm.weight") | |
converted_state_dict["image_proj.norm.bias"] = original_state_dict.pop("ip_adapter_proj_model.norm.bias") | |
## proj | |
converted_state_dict["image_proj.proj.weight"] = original_state_dict.pop("ip_adapter_proj_model.norm.weight") | |
converted_state_dict["image_proj.proj.bias"] = original_state_dict.pop("ip_adapter_proj_model.norm.bias") | |
# double transformer blocks | |
for i in range(num_layers): | |
block_prefix = f"ip_adapter.{i}." | |
# to_k_ip | |
converted_state_dict[f"{block_prefix}to_k_ip.bias"] = original_state_dict.pop( | |
f"double_blocks.{i}.processor.ip_adapter_double_stream_k_proj.bias" | |
) | |
converted_state_dict[f"{block_prefix}to_k_ip.weight"] = original_state_dict.pop( | |
f"double_blocks.{i}.processor.ip_adapter_double_stream_k_proj.weight" | |
) | |
# to_v_ip | |
converted_state_dict[f"{block_prefix}to_v_ip.bias"] = original_state_dict.pop( | |
f"double_blocks.{i}.processor.ip_adapter_double_stream_v_proj.bias" | |
) | |
converted_state_dict[f"{block_prefix}to_k_ip.weight"] = original_state_dict.pop( | |
f"double_blocks.{i}.processor.ip_adapter_double_stream_v_proj.weight" | |
) | |
return converted_state_dict | |
def main(args): | |
original_ckpt = load_original_checkpoint(args) | |
num_layers = 19 | |
converted_ip_adapter_state_dict = convert_flux_ipadapter_checkpoint_to_diffusers(original_ckpt, num_layers) | |
print("Saving Flux IP-Adapter in Diffusers format.") | |
safetensors.torch.save_file(converted_ip_adapter_state_dict, f"{args.output_path}/model.safetensors") | |
if vision: | |
model = CLIPVisionModelWithProjection.from_pretrained(args.vision_pretrained_or_path) | |
model.save_pretrained(f"{args.output_path}/image_encoder") | |
if __name__ == "__main__": | |
main(args) | |