Omnieraser / diffusers /scripts /convert_flux_xlabs_ipadapter_to_diffusers.py
theSure's picture
Upload 2037 files
a49cc2f verified
import argparse
from contextlib import nullcontext
import safetensors.torch
from accelerate import init_empty_weights
from huggingface_hub import hf_hub_download
from diffusers.utils.import_utils import is_accelerate_available, is_transformers_available
if is_transformers_available():
from transformers import CLIPVisionModelWithProjection
vision = True
else:
vision = False
"""
python scripts/convert_flux_xlabs_ipadapter_to_diffusers.py \
--original_state_dict_repo_id "XLabs-AI/flux-ip-adapter" \
--filename "flux-ip-adapter.safetensors"
--output_path "flux-ip-adapter-hf/"
"""
CTX = init_empty_weights if is_accelerate_available else nullcontext
parser = argparse.ArgumentParser()
parser.add_argument("--original_state_dict_repo_id", default=None, type=str)
parser.add_argument("--filename", default="flux.safetensors", type=str)
parser.add_argument("--checkpoint_path", default=None, type=str)
parser.add_argument("--output_path", type=str)
parser.add_argument("--vision_pretrained_or_path", default="openai/clip-vit-large-patch14", type=str)
args = parser.parse_args()
def load_original_checkpoint(args):
if args.original_state_dict_repo_id is not None:
ckpt_path = hf_hub_download(repo_id=args.original_state_dict_repo_id, filename=args.filename)
elif args.checkpoint_path is not None:
ckpt_path = args.checkpoint_path
else:
raise ValueError(" please provide either `original_state_dict_repo_id` or a local `checkpoint_path`")
original_state_dict = safetensors.torch.load_file(ckpt_path)
return original_state_dict
def convert_flux_ipadapter_checkpoint_to_diffusers(original_state_dict, num_layers):
converted_state_dict = {}
# image_proj
## norm
converted_state_dict["image_proj.norm.weight"] = original_state_dict.pop("ip_adapter_proj_model.norm.weight")
converted_state_dict["image_proj.norm.bias"] = original_state_dict.pop("ip_adapter_proj_model.norm.bias")
## proj
converted_state_dict["image_proj.proj.weight"] = original_state_dict.pop("ip_adapter_proj_model.norm.weight")
converted_state_dict["image_proj.proj.bias"] = original_state_dict.pop("ip_adapter_proj_model.norm.bias")
# double transformer blocks
for i in range(num_layers):
block_prefix = f"ip_adapter.{i}."
# to_k_ip
converted_state_dict[f"{block_prefix}to_k_ip.bias"] = original_state_dict.pop(
f"double_blocks.{i}.processor.ip_adapter_double_stream_k_proj.bias"
)
converted_state_dict[f"{block_prefix}to_k_ip.weight"] = original_state_dict.pop(
f"double_blocks.{i}.processor.ip_adapter_double_stream_k_proj.weight"
)
# to_v_ip
converted_state_dict[f"{block_prefix}to_v_ip.bias"] = original_state_dict.pop(
f"double_blocks.{i}.processor.ip_adapter_double_stream_v_proj.bias"
)
converted_state_dict[f"{block_prefix}to_k_ip.weight"] = original_state_dict.pop(
f"double_blocks.{i}.processor.ip_adapter_double_stream_v_proj.weight"
)
return converted_state_dict
def main(args):
original_ckpt = load_original_checkpoint(args)
num_layers = 19
converted_ip_adapter_state_dict = convert_flux_ipadapter_checkpoint_to_diffusers(original_ckpt, num_layers)
print("Saving Flux IP-Adapter in Diffusers format.")
safetensors.torch.save_file(converted_ip_adapter_state_dict, f"{args.output_path}/model.safetensors")
if vision:
model = CLIPVisionModelWithProjection.from_pretrained(args.vision_pretrained_or_path)
model.save_pretrained(f"{args.output_path}/image_encoder")
if __name__ == "__main__":
main(args)