Spaces:
Running
on
Zero
Running
on
Zero
import argparse | |
from pathlib import Path | |
from typing import Any, Dict | |
import torch | |
from accelerate import init_empty_weights | |
from safetensors.torch import load_file | |
from transformers import T5EncoderModel, T5Tokenizer | |
from diffusers import AutoencoderKLLTXVideo, FlowMatchEulerDiscreteScheduler, LTXPipeline, LTXVideoTransformer3DModel | |
def remove_keys_(key: str, state_dict: Dict[str, Any]): | |
state_dict.pop(key) | |
TOKENIZER_MAX_LENGTH = 128 | |
TRANSFORMER_KEYS_RENAME_DICT = { | |
"patchify_proj": "proj_in", | |
"adaln_single": "time_embed", | |
"q_norm": "norm_q", | |
"k_norm": "norm_k", | |
} | |
TRANSFORMER_SPECIAL_KEYS_REMAP = { | |
"vae": remove_keys_, | |
} | |
VAE_KEYS_RENAME_DICT = { | |
# decoder | |
"up_blocks.0": "mid_block", | |
"up_blocks.1": "up_blocks.0", | |
"up_blocks.2": "up_blocks.1.upsamplers.0", | |
"up_blocks.3": "up_blocks.1", | |
"up_blocks.4": "up_blocks.2.conv_in", | |
"up_blocks.5": "up_blocks.2.upsamplers.0", | |
"up_blocks.6": "up_blocks.2", | |
"up_blocks.7": "up_blocks.3.conv_in", | |
"up_blocks.8": "up_blocks.3.upsamplers.0", | |
"up_blocks.9": "up_blocks.3", | |
# encoder | |
"down_blocks.0": "down_blocks.0", | |
"down_blocks.1": "down_blocks.0.downsamplers.0", | |
"down_blocks.2": "down_blocks.0.conv_out", | |
"down_blocks.3": "down_blocks.1", | |
"down_blocks.4": "down_blocks.1.downsamplers.0", | |
"down_blocks.5": "down_blocks.1.conv_out", | |
"down_blocks.6": "down_blocks.2", | |
"down_blocks.7": "down_blocks.2.downsamplers.0", | |
"down_blocks.8": "down_blocks.3", | |
"down_blocks.9": "mid_block", | |
# common | |
"conv_shortcut": "conv_shortcut.conv", | |
"res_blocks": "resnets", | |
"norm3.norm": "norm3", | |
"per_channel_statistics.mean-of-means": "latents_mean", | |
"per_channel_statistics.std-of-means": "latents_std", | |
} | |
VAE_091_RENAME_DICT = { | |
# decoder | |
"up_blocks.0": "mid_block", | |
"up_blocks.1": "up_blocks.0.upsamplers.0", | |
"up_blocks.2": "up_blocks.0", | |
"up_blocks.3": "up_blocks.1.upsamplers.0", | |
"up_blocks.4": "up_blocks.1", | |
"up_blocks.5": "up_blocks.2.upsamplers.0", | |
"up_blocks.6": "up_blocks.2", | |
"up_blocks.7": "up_blocks.3.upsamplers.0", | |
"up_blocks.8": "up_blocks.3", | |
# common | |
"last_time_embedder": "time_embedder", | |
"last_scale_shift_table": "scale_shift_table", | |
} | |
VAE_SPECIAL_KEYS_REMAP = { | |
"per_channel_statistics.channel": remove_keys_, | |
"per_channel_statistics.mean-of-means": remove_keys_, | |
"per_channel_statistics.mean-of-stds": remove_keys_, | |
"model.diffusion_model": remove_keys_, | |
} | |
VAE_091_SPECIAL_KEYS_REMAP = { | |
"timestep_scale_multiplier": remove_keys_, | |
} | |
def get_state_dict(saved_dict: Dict[str, Any]) -> Dict[str, Any]: | |
state_dict = saved_dict | |
if "model" in saved_dict.keys(): | |
state_dict = state_dict["model"] | |
if "module" in saved_dict.keys(): | |
state_dict = state_dict["module"] | |
if "state_dict" in saved_dict.keys(): | |
state_dict = state_dict["state_dict"] | |
return state_dict | |
def update_state_dict_inplace(state_dict: Dict[str, Any], old_key: str, new_key: str) -> Dict[str, Any]: | |
state_dict[new_key] = state_dict.pop(old_key) | |
def convert_transformer( | |
ckpt_path: str, | |
dtype: torch.dtype, | |
): | |
PREFIX_KEY = "model.diffusion_model." | |
original_state_dict = get_state_dict(load_file(ckpt_path)) | |
with init_empty_weights(): | |
transformer = LTXVideoTransformer3DModel() | |
for key in list(original_state_dict.keys()): | |
new_key = key[:] | |
if new_key.startswith(PREFIX_KEY): | |
new_key = key[len(PREFIX_KEY) :] | |
for replace_key, rename_key in TRANSFORMER_KEYS_RENAME_DICT.items(): | |
new_key = new_key.replace(replace_key, rename_key) | |
update_state_dict_inplace(original_state_dict, key, new_key) | |
for key in list(original_state_dict.keys()): | |
for special_key, handler_fn_inplace in TRANSFORMER_SPECIAL_KEYS_REMAP.items(): | |
if special_key not in key: | |
continue | |
handler_fn_inplace(key, original_state_dict) | |
transformer.load_state_dict(original_state_dict, strict=True, assign=True) | |
return transformer | |
def convert_vae(ckpt_path: str, config, dtype: torch.dtype): | |
PREFIX_KEY = "vae." | |
original_state_dict = get_state_dict(load_file(ckpt_path)) | |
with init_empty_weights(): | |
vae = AutoencoderKLLTXVideo(**config) | |
for key in list(original_state_dict.keys()): | |
new_key = key[:] | |
if new_key.startswith(PREFIX_KEY): | |
new_key = key[len(PREFIX_KEY) :] | |
for replace_key, rename_key in VAE_KEYS_RENAME_DICT.items(): | |
new_key = new_key.replace(replace_key, rename_key) | |
update_state_dict_inplace(original_state_dict, key, new_key) | |
for key in list(original_state_dict.keys()): | |
for special_key, handler_fn_inplace in VAE_SPECIAL_KEYS_REMAP.items(): | |
if special_key not in key: | |
continue | |
handler_fn_inplace(key, original_state_dict) | |
vae.load_state_dict(original_state_dict, strict=True, assign=True) | |
return vae | |
def get_vae_config(version: str) -> Dict[str, Any]: | |
if version == "0.9.0": | |
config = { | |
"in_channels": 3, | |
"out_channels": 3, | |
"latent_channels": 128, | |
"block_out_channels": (128, 256, 512, 512), | |
"decoder_block_out_channels": (128, 256, 512, 512), | |
"layers_per_block": (4, 3, 3, 3, 4), | |
"decoder_layers_per_block": (4, 3, 3, 3, 4), | |
"spatio_temporal_scaling": (True, True, True, False), | |
"decoder_spatio_temporal_scaling": (True, True, True, False), | |
"decoder_inject_noise": (False, False, False, False, False), | |
"upsample_residual": (False, False, False, False), | |
"upsample_factor": (1, 1, 1, 1), | |
"patch_size": 4, | |
"patch_size_t": 1, | |
"resnet_norm_eps": 1e-6, | |
"scaling_factor": 1.0, | |
"encoder_causal": True, | |
"decoder_causal": False, | |
"timestep_conditioning": False, | |
} | |
elif version == "0.9.1": | |
config = { | |
"in_channels": 3, | |
"out_channels": 3, | |
"latent_channels": 128, | |
"block_out_channels": (128, 256, 512, 512), | |
"decoder_block_out_channels": (256, 512, 1024), | |
"layers_per_block": (4, 3, 3, 3, 4), | |
"decoder_layers_per_block": (5, 6, 7, 8), | |
"spatio_temporal_scaling": (True, True, True, False), | |
"decoder_spatio_temporal_scaling": (True, True, True), | |
"decoder_inject_noise": (True, True, True, False), | |
"upsample_residual": (True, True, True), | |
"upsample_factor": (2, 2, 2), | |
"timestep_conditioning": True, | |
"patch_size": 4, | |
"patch_size_t": 1, | |
"resnet_norm_eps": 1e-6, | |
"scaling_factor": 1.0, | |
"encoder_causal": True, | |
"decoder_causal": False, | |
} | |
VAE_KEYS_RENAME_DICT.update(VAE_091_RENAME_DICT) | |
VAE_SPECIAL_KEYS_REMAP.update(VAE_091_SPECIAL_KEYS_REMAP) | |
return config | |
def get_args(): | |
parser = argparse.ArgumentParser() | |
parser.add_argument( | |
"--transformer_ckpt_path", type=str, default=None, help="Path to original transformer checkpoint" | |
) | |
parser.add_argument("--vae_ckpt_path", type=str, default=None, help="Path to original vae checkpoint") | |
parser.add_argument( | |
"--text_encoder_cache_dir", type=str, default=None, help="Path to text encoder cache directory" | |
) | |
parser.add_argument( | |
"--typecast_text_encoder", | |
action="store_true", | |
default=False, | |
help="Whether or not to apply fp16/bf16 precision to text_encoder", | |
) | |
parser.add_argument("--save_pipeline", action="store_true") | |
parser.add_argument("--output_path", type=str, required=True, help="Path where converted model should be saved") | |
parser.add_argument("--dtype", default="fp32", help="Torch dtype to save the model in.") | |
parser.add_argument( | |
"--version", type=str, default="0.9.0", choices=["0.9.0", "0.9.1"], help="Version of the LTX model" | |
) | |
return parser.parse_args() | |
DTYPE_MAPPING = { | |
"fp32": torch.float32, | |
"fp16": torch.float16, | |
"bf16": torch.bfloat16, | |
} | |
VARIANT_MAPPING = { | |
"fp32": None, | |
"fp16": "fp16", | |
"bf16": "bf16", | |
} | |
if __name__ == "__main__": | |
args = get_args() | |
transformer = None | |
dtype = DTYPE_MAPPING[args.dtype] | |
variant = VARIANT_MAPPING[args.dtype] | |
output_path = Path(args.output_path) | |
if args.save_pipeline: | |
assert args.transformer_ckpt_path is not None and args.vae_ckpt_path is not None | |
if args.transformer_ckpt_path is not None: | |
transformer: LTXVideoTransformer3DModel = convert_transformer(args.transformer_ckpt_path, dtype) | |
if not args.save_pipeline: | |
transformer.save_pretrained( | |
output_path / "transformer", safe_serialization=True, max_shard_size="5GB", variant=variant | |
) | |
if args.vae_ckpt_path is not None: | |
config = get_vae_config(args.version) | |
vae: AutoencoderKLLTXVideo = convert_vae(args.vae_ckpt_path, config, dtype) | |
if not args.save_pipeline: | |
vae.save_pretrained(output_path / "vae", safe_serialization=True, max_shard_size="5GB", variant=variant) | |
if args.save_pipeline: | |
text_encoder_id = "google/t5-v1_1-xxl" | |
tokenizer = T5Tokenizer.from_pretrained(text_encoder_id, model_max_length=TOKENIZER_MAX_LENGTH) | |
text_encoder = T5EncoderModel.from_pretrained(text_encoder_id, cache_dir=args.text_encoder_cache_dir) | |
if args.typecast_text_encoder: | |
text_encoder = text_encoder.to(dtype=dtype) | |
# Apparently, the conversion does not work anymore without this :shrug: | |
for param in text_encoder.parameters(): | |
param.data = param.data.contiguous() | |
scheduler = FlowMatchEulerDiscreteScheduler( | |
use_dynamic_shifting=True, | |
base_shift=0.95, | |
max_shift=2.05, | |
base_image_seq_len=1024, | |
max_image_seq_len=4096, | |
shift_terminal=0.1, | |
) | |
pipe = LTXPipeline( | |
scheduler=scheduler, | |
vae=vae, | |
text_encoder=text_encoder, | |
tokenizer=tokenizer, | |
transformer=transformer, | |
) | |
pipe.save_pretrained(args.output_path, safe_serialization=True, variant=variant, max_shard_size="5GB") | |