Spaces:
Running
on
Zero
Running
on
Zero
# coding=utf-8 | |
# Copyright 2024 HuggingFace Inc. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import copy | |
import gc | |
import os | |
import sys | |
import tempfile | |
import unittest | |
import numpy as np | |
import pytest | |
import safetensors.torch | |
import torch | |
from parameterized import parameterized | |
from PIL import Image | |
from transformers import AutoTokenizer, CLIPTextModel, CLIPTokenizer, T5EncoderModel | |
from diffusers import FlowMatchEulerDiscreteScheduler, FluxControlPipeline, FluxPipeline, FluxTransformer2DModel | |
from diffusers.utils import load_image, logging | |
from diffusers.utils.testing_utils import ( | |
CaptureLogger, | |
floats_tensor, | |
is_peft_available, | |
nightly, | |
numpy_cosine_similarity_distance, | |
require_big_gpu_with_torch_cuda, | |
require_peft_backend, | |
require_torch_gpu, | |
slow, | |
torch_device, | |
) | |
if is_peft_available(): | |
from peft.utils import get_peft_model_state_dict | |
sys.path.append(".") | |
from utils import PeftLoraLoaderMixinTests, check_if_lora_correctly_set # noqa: E402 | |
class FluxLoRATests(unittest.TestCase, PeftLoraLoaderMixinTests): | |
pipeline_class = FluxPipeline | |
scheduler_cls = FlowMatchEulerDiscreteScheduler() | |
scheduler_kwargs = {} | |
scheduler_classes = [FlowMatchEulerDiscreteScheduler] | |
transformer_kwargs = { | |
"patch_size": 1, | |
"in_channels": 4, | |
"num_layers": 1, | |
"num_single_layers": 1, | |
"attention_head_dim": 16, | |
"num_attention_heads": 2, | |
"joint_attention_dim": 32, | |
"pooled_projection_dim": 32, | |
"axes_dims_rope": [4, 4, 8], | |
} | |
transformer_cls = FluxTransformer2DModel | |
vae_kwargs = { | |
"sample_size": 32, | |
"in_channels": 3, | |
"out_channels": 3, | |
"block_out_channels": (4,), | |
"layers_per_block": 1, | |
"latent_channels": 1, | |
"norm_num_groups": 1, | |
"use_quant_conv": False, | |
"use_post_quant_conv": False, | |
"shift_factor": 0.0609, | |
"scaling_factor": 1.5035, | |
} | |
has_two_text_encoders = True | |
tokenizer_cls, tokenizer_id = CLIPTokenizer, "peft-internal-testing/tiny-clip-text-2" | |
tokenizer_2_cls, tokenizer_2_id = AutoTokenizer, "hf-internal-testing/tiny-random-t5" | |
text_encoder_cls, text_encoder_id = CLIPTextModel, "peft-internal-testing/tiny-clip-text-2" | |
text_encoder_2_cls, text_encoder_2_id = T5EncoderModel, "hf-internal-testing/tiny-random-t5" | |
def output_shape(self): | |
return (1, 8, 8, 3) | |
def get_dummy_inputs(self, with_generator=True): | |
batch_size = 1 | |
sequence_length = 10 | |
num_channels = 4 | |
sizes = (32, 32) | |
generator = torch.manual_seed(0) | |
noise = floats_tensor((batch_size, num_channels) + sizes) | |
input_ids = torch.randint(1, sequence_length, size=(batch_size, sequence_length), generator=generator) | |
pipeline_inputs = { | |
"prompt": "A painting of a squirrel eating a burger", | |
"num_inference_steps": 4, | |
"guidance_scale": 0.0, | |
"height": 8, | |
"width": 8, | |
"output_type": "np", | |
} | |
if with_generator: | |
pipeline_inputs.update({"generator": generator}) | |
return noise, input_ids, pipeline_inputs | |
def test_with_alpha_in_state_dict(self): | |
components, _, denoiser_lora_config = self.get_dummy_components(FlowMatchEulerDiscreteScheduler) | |
pipe = self.pipeline_class(**components) | |
pipe = pipe.to(torch_device) | |
pipe.set_progress_bar_config(disable=None) | |
_, _, inputs = self.get_dummy_inputs(with_generator=False) | |
output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images | |
self.assertTrue(output_no_lora.shape == self.output_shape) | |
pipe.transformer.add_adapter(denoiser_lora_config) | |
self.assertTrue(check_if_lora_correctly_set(pipe.transformer), "Lora not correctly set in transformer") | |
images_lora = pipe(**inputs, generator=torch.manual_seed(0)).images | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
denoiser_state_dict = get_peft_model_state_dict(pipe.transformer) | |
self.pipeline_class.save_lora_weights(tmpdirname, transformer_lora_layers=denoiser_state_dict) | |
self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.safetensors"))) | |
pipe.unload_lora_weights() | |
pipe.load_lora_weights(os.path.join(tmpdirname, "pytorch_lora_weights.safetensors")) | |
# modify the state dict to have alpha values following | |
# https://huggingface.co/TheLastBen/Jon_Snow_Flux_LoRA/blob/main/jon_snow.safetensors | |
state_dict_with_alpha = safetensors.torch.load_file( | |
os.path.join(tmpdirname, "pytorch_lora_weights.safetensors") | |
) | |
alpha_dict = {} | |
for k, v in state_dict_with_alpha.items(): | |
# only do for `transformer` and for the k projections -- should be enough to test. | |
if "transformer" in k and "to_k" in k and "lora_A" in k: | |
alpha_dict[f"{k}.alpha"] = float(torch.randint(10, 100, size=())) | |
state_dict_with_alpha.update(alpha_dict) | |
images_lora_from_pretrained = pipe(**inputs, generator=torch.manual_seed(0)).images | |
self.assertTrue(check_if_lora_correctly_set(pipe.transformer), "Lora not correctly set in denoiser") | |
pipe.unload_lora_weights() | |
pipe.load_lora_weights(state_dict_with_alpha) | |
images_lora_with_alpha = pipe(**inputs, generator=torch.manual_seed(0)).images | |
self.assertTrue( | |
np.allclose(images_lora, images_lora_from_pretrained, atol=1e-3, rtol=1e-3), | |
"Loading from saved checkpoints should give same results.", | |
) | |
self.assertFalse(np.allclose(images_lora_with_alpha, images_lora, atol=1e-3, rtol=1e-3)) | |
def test_lora_expansion_works_for_absent_keys(self): | |
components, _, denoiser_lora_config = self.get_dummy_components(FlowMatchEulerDiscreteScheduler) | |
pipe = self.pipeline_class(**components) | |
pipe = pipe.to(torch_device) | |
pipe.set_progress_bar_config(disable=None) | |
_, _, inputs = self.get_dummy_inputs(with_generator=False) | |
output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images | |
self.assertTrue(output_no_lora.shape == self.output_shape) | |
# Modify the config to have a layer which won't be present in the second LoRA we will load. | |
modified_denoiser_lora_config = copy.deepcopy(denoiser_lora_config) | |
modified_denoiser_lora_config.target_modules.add("x_embedder") | |
pipe.transformer.add_adapter(modified_denoiser_lora_config) | |
self.assertTrue(check_if_lora_correctly_set(pipe.transformer), "Lora not correctly set in transformer") | |
images_lora = pipe(**inputs, generator=torch.manual_seed(0)).images | |
self.assertFalse( | |
np.allclose(images_lora, output_no_lora, atol=1e-3, rtol=1e-3), | |
"LoRA should lead to different results.", | |
) | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
denoiser_state_dict = get_peft_model_state_dict(pipe.transformer) | |
self.pipeline_class.save_lora_weights(tmpdirname, transformer_lora_layers=denoiser_state_dict) | |
self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.safetensors"))) | |
pipe.unload_lora_weights() | |
pipe.load_lora_weights(os.path.join(tmpdirname, "pytorch_lora_weights.safetensors"), adapter_name="one") | |
# Modify the state dict to exclude "x_embedder" related LoRA params. | |
lora_state_dict = safetensors.torch.load_file(os.path.join(tmpdirname, "pytorch_lora_weights.safetensors")) | |
lora_state_dict_without_xembedder = {k: v for k, v in lora_state_dict.items() if "x_embedder" not in k} | |
pipe.load_lora_weights(lora_state_dict_without_xembedder, adapter_name="two") | |
pipe.set_adapters(["one", "two"]) | |
self.assertTrue(check_if_lora_correctly_set(pipe.transformer), "Lora not correctly set in transformer") | |
images_lora_with_absent_keys = pipe(**inputs, generator=torch.manual_seed(0)).images | |
self.assertFalse( | |
np.allclose(images_lora, images_lora_with_absent_keys, atol=1e-3, rtol=1e-3), | |
"Different LoRAs should lead to different results.", | |
) | |
self.assertFalse( | |
np.allclose(output_no_lora, images_lora_with_absent_keys, atol=1e-3, rtol=1e-3), | |
"LoRA should lead to different results.", | |
) | |
def test_lora_expansion_works_for_extra_keys(self): | |
components, _, denoiser_lora_config = self.get_dummy_components(FlowMatchEulerDiscreteScheduler) | |
pipe = self.pipeline_class(**components) | |
pipe = pipe.to(torch_device) | |
pipe.set_progress_bar_config(disable=None) | |
_, _, inputs = self.get_dummy_inputs(with_generator=False) | |
output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images | |
self.assertTrue(output_no_lora.shape == self.output_shape) | |
# Modify the config to have a layer which won't be present in the first LoRA we will load. | |
modified_denoiser_lora_config = copy.deepcopy(denoiser_lora_config) | |
modified_denoiser_lora_config.target_modules.add("x_embedder") | |
pipe.transformer.add_adapter(modified_denoiser_lora_config) | |
self.assertTrue(check_if_lora_correctly_set(pipe.transformer), "Lora not correctly set in transformer") | |
images_lora = pipe(**inputs, generator=torch.manual_seed(0)).images | |
self.assertFalse( | |
np.allclose(images_lora, output_no_lora, atol=1e-3, rtol=1e-3), | |
"LoRA should lead to different results.", | |
) | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
denoiser_state_dict = get_peft_model_state_dict(pipe.transformer) | |
self.pipeline_class.save_lora_weights(tmpdirname, transformer_lora_layers=denoiser_state_dict) | |
self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.safetensors"))) | |
pipe.unload_lora_weights() | |
# Modify the state dict to exclude "x_embedder" related LoRA params. | |
lora_state_dict = safetensors.torch.load_file(os.path.join(tmpdirname, "pytorch_lora_weights.safetensors")) | |
lora_state_dict_without_xembedder = {k: v for k, v in lora_state_dict.items() if "x_embedder" not in k} | |
pipe.load_lora_weights(lora_state_dict_without_xembedder, adapter_name="one") | |
# Load state dict with `x_embedder`. | |
pipe.load_lora_weights(os.path.join(tmpdirname, "pytorch_lora_weights.safetensors"), adapter_name="two") | |
pipe.set_adapters(["one", "two"]) | |
self.assertTrue(check_if_lora_correctly_set(pipe.transformer), "Lora not correctly set in transformer") | |
images_lora_with_extra_keys = pipe(**inputs, generator=torch.manual_seed(0)).images | |
self.assertFalse( | |
np.allclose(images_lora, images_lora_with_extra_keys, atol=1e-3, rtol=1e-3), | |
"Different LoRAs should lead to different results.", | |
) | |
self.assertFalse( | |
np.allclose(output_no_lora, images_lora_with_extra_keys, atol=1e-3, rtol=1e-3), | |
"LoRA should lead to different results.", | |
) | |
def test_simple_inference_with_text_denoiser_block_scale_for_all_dict_options(self): | |
pass | |
def test_modify_padding_mode(self): | |
pass | |
class FluxControlLoRATests(unittest.TestCase, PeftLoraLoaderMixinTests): | |
pipeline_class = FluxControlPipeline | |
scheduler_cls = FlowMatchEulerDiscreteScheduler() | |
scheduler_kwargs = {} | |
scheduler_classes = [FlowMatchEulerDiscreteScheduler] | |
transformer_kwargs = { | |
"patch_size": 1, | |
"in_channels": 8, | |
"out_channels": 4, | |
"num_layers": 1, | |
"num_single_layers": 1, | |
"attention_head_dim": 16, | |
"num_attention_heads": 2, | |
"joint_attention_dim": 32, | |
"pooled_projection_dim": 32, | |
"axes_dims_rope": [4, 4, 8], | |
} | |
transformer_cls = FluxTransformer2DModel | |
vae_kwargs = { | |
"sample_size": 32, | |
"in_channels": 3, | |
"out_channels": 3, | |
"block_out_channels": (4,), | |
"layers_per_block": 1, | |
"latent_channels": 1, | |
"norm_num_groups": 1, | |
"use_quant_conv": False, | |
"use_post_quant_conv": False, | |
"shift_factor": 0.0609, | |
"scaling_factor": 1.5035, | |
} | |
has_two_text_encoders = True | |
tokenizer_cls, tokenizer_id = CLIPTokenizer, "peft-internal-testing/tiny-clip-text-2" | |
tokenizer_2_cls, tokenizer_2_id = AutoTokenizer, "hf-internal-testing/tiny-random-t5" | |
text_encoder_cls, text_encoder_id = CLIPTextModel, "peft-internal-testing/tiny-clip-text-2" | |
text_encoder_2_cls, text_encoder_2_id = T5EncoderModel, "hf-internal-testing/tiny-random-t5" | |
def output_shape(self): | |
return (1, 8, 8, 3) | |
def get_dummy_inputs(self, with_generator=True): | |
batch_size = 1 | |
sequence_length = 10 | |
num_channels = 4 | |
sizes = (32, 32) | |
generator = torch.manual_seed(0) | |
noise = floats_tensor((batch_size, num_channels) + sizes) | |
input_ids = torch.randint(1, sequence_length, size=(batch_size, sequence_length), generator=generator) | |
pipeline_inputs = { | |
"prompt": "A painting of a squirrel eating a burger", | |
"control_image": Image.fromarray(np.random.randint(0, 255, size=(32, 32, 3), dtype="uint8")), | |
"num_inference_steps": 4, | |
"guidance_scale": 0.0, | |
"height": 8, | |
"width": 8, | |
"output_type": "np", | |
} | |
if with_generator: | |
pipeline_inputs.update({"generator": generator}) | |
return noise, input_ids, pipeline_inputs | |
def test_with_norm_in_state_dict(self): | |
components, _, denoiser_lora_config = self.get_dummy_components(FlowMatchEulerDiscreteScheduler) | |
pipe = self.pipeline_class(**components) | |
pipe = pipe.to(torch_device) | |
pipe.set_progress_bar_config(disable=None) | |
_, _, inputs = self.get_dummy_inputs(with_generator=False) | |
logger = logging.get_logger("diffusers.loaders.lora_pipeline") | |
logger.setLevel(logging.INFO) | |
original_output = pipe(**inputs, generator=torch.manual_seed(0))[0] | |
for norm_layer in ["norm_q", "norm_k", "norm_added_q", "norm_added_k"]: | |
norm_state_dict = {} | |
for name, module in pipe.transformer.named_modules(): | |
if norm_layer not in name or not hasattr(module, "weight") or module.weight is None: | |
continue | |
norm_state_dict[f"transformer.{name}.weight"] = torch.randn( | |
module.weight.shape, device=module.weight.device, dtype=module.weight.dtype | |
) | |
with CaptureLogger(logger) as cap_logger: | |
pipe.load_lora_weights(norm_state_dict) | |
lora_load_output = pipe(**inputs, generator=torch.manual_seed(0))[0] | |
self.assertTrue( | |
cap_logger.out.startswith( | |
"The provided state dict contains normalization layers in addition to LoRA layers" | |
) | |
) | |
self.assertTrue(len(pipe.transformer._transformer_norm_layers) > 0) | |
pipe.unload_lora_weights() | |
lora_unload_output = pipe(**inputs, generator=torch.manual_seed(0))[0] | |
self.assertTrue(pipe.transformer._transformer_norm_layers is None) | |
self.assertTrue(np.allclose(original_output, lora_unload_output, atol=1e-5, rtol=1e-5)) | |
self.assertFalse( | |
np.allclose(original_output, lora_load_output, atol=1e-6, rtol=1e-6), f"{norm_layer} is tested" | |
) | |
with CaptureLogger(logger) as cap_logger: | |
for key in list(norm_state_dict.keys()): | |
norm_state_dict[key.replace("norm", "norm_k_something_random")] = norm_state_dict.pop(key) | |
pipe.load_lora_weights(norm_state_dict) | |
self.assertTrue( | |
cap_logger.out.startswith("Unsupported keys found in state dict when trying to load normalization layers") | |
) | |
def test_lora_parameter_expanded_shapes(self): | |
components, _, _ = self.get_dummy_components(FlowMatchEulerDiscreteScheduler) | |
pipe = self.pipeline_class(**components) | |
pipe = pipe.to(torch_device) | |
pipe.set_progress_bar_config(disable=None) | |
_, _, inputs = self.get_dummy_inputs(with_generator=False) | |
original_out = pipe(**inputs, generator=torch.manual_seed(0))[0] | |
logger = logging.get_logger("diffusers.loaders.lora_pipeline") | |
logger.setLevel(logging.DEBUG) | |
# Change the transformer config to mimic a real use case. | |
num_channels_without_control = 4 | |
transformer = FluxTransformer2DModel.from_config( | |
components["transformer"].config, in_channels=num_channels_without_control | |
).to(torch_device) | |
self.assertTrue( | |
transformer.config.in_channels == num_channels_without_control, | |
f"Expected {num_channels_without_control} channels in the modified transformer but has {transformer.config.in_channels=}", | |
) | |
original_transformer_state_dict = pipe.transformer.state_dict() | |
x_embedder_weight = original_transformer_state_dict.pop("x_embedder.weight") | |
incompatible_keys = transformer.load_state_dict(original_transformer_state_dict, strict=False) | |
self.assertTrue( | |
"x_embedder.weight" in incompatible_keys.missing_keys, | |
"Could not find x_embedder.weight in the missing keys.", | |
) | |
transformer.x_embedder.weight.data.copy_(x_embedder_weight[..., :num_channels_without_control]) | |
pipe.transformer = transformer | |
out_features, in_features = pipe.transformer.x_embedder.weight.shape | |
rank = 4 | |
dummy_lora_A = torch.nn.Linear(2 * in_features, rank, bias=False) | |
dummy_lora_B = torch.nn.Linear(rank, out_features, bias=False) | |
lora_state_dict = { | |
"transformer.x_embedder.lora_A.weight": dummy_lora_A.weight, | |
"transformer.x_embedder.lora_B.weight": dummy_lora_B.weight, | |
} | |
with CaptureLogger(logger) as cap_logger: | |
pipe.load_lora_weights(lora_state_dict, "adapter-1") | |
self.assertTrue(check_if_lora_correctly_set(pipe.transformer), "Lora not correctly set in denoiser") | |
lora_out = pipe(**inputs, generator=torch.manual_seed(0))[0] | |
self.assertFalse(np.allclose(original_out, lora_out, rtol=1e-4, atol=1e-4)) | |
self.assertTrue(pipe.transformer.x_embedder.weight.data.shape[1] == 2 * in_features) | |
self.assertTrue(pipe.transformer.config.in_channels == 2 * in_features) | |
self.assertTrue(cap_logger.out.startswith("Expanding the nn.Linear input/output features for module")) | |
# Testing opposite direction where the LoRA params are zero-padded. | |
components, _, _ = self.get_dummy_components(FlowMatchEulerDiscreteScheduler) | |
pipe = self.pipeline_class(**components) | |
pipe = pipe.to(torch_device) | |
pipe.set_progress_bar_config(disable=None) | |
dummy_lora_A = torch.nn.Linear(1, rank, bias=False) | |
dummy_lora_B = torch.nn.Linear(rank, out_features, bias=False) | |
lora_state_dict = { | |
"transformer.x_embedder.lora_A.weight": dummy_lora_A.weight, | |
"transformer.x_embedder.lora_B.weight": dummy_lora_B.weight, | |
} | |
with CaptureLogger(logger) as cap_logger: | |
pipe.load_lora_weights(lora_state_dict, "adapter-1") | |
self.assertTrue(check_if_lora_correctly_set(pipe.transformer), "Lora not correctly set in denoiser") | |
lora_out = pipe(**inputs, generator=torch.manual_seed(0))[0] | |
self.assertFalse(np.allclose(original_out, lora_out, rtol=1e-4, atol=1e-4)) | |
self.assertTrue(pipe.transformer.x_embedder.weight.data.shape[1] == 2 * in_features) | |
self.assertTrue(pipe.transformer.config.in_channels == 2 * in_features) | |
self.assertTrue("The following LoRA modules were zero padded to match the state dict of" in cap_logger.out) | |
def test_normal_lora_with_expanded_lora_raises_error(self): | |
# Test the following situation. Load a regular LoRA (such as the ones trained on Flux.1-Dev). And then | |
# load shape expanded LoRA (such as Control LoRA). | |
components, _, _ = self.get_dummy_components(FlowMatchEulerDiscreteScheduler) | |
# Change the transformer config to mimic a real use case. | |
num_channels_without_control = 4 | |
transformer = FluxTransformer2DModel.from_config( | |
components["transformer"].config, in_channels=num_channels_without_control | |
).to(torch_device) | |
components["transformer"] = transformer | |
pipe = self.pipeline_class(**components) | |
pipe = pipe.to(torch_device) | |
pipe.set_progress_bar_config(disable=None) | |
logger = logging.get_logger("diffusers.loaders.lora_pipeline") | |
logger.setLevel(logging.DEBUG) | |
out_features, in_features = pipe.transformer.x_embedder.weight.shape | |
rank = 4 | |
shape_expander_lora_A = torch.nn.Linear(2 * in_features, rank, bias=False) | |
shape_expander_lora_B = torch.nn.Linear(rank, out_features, bias=False) | |
lora_state_dict = { | |
"transformer.x_embedder.lora_A.weight": shape_expander_lora_A.weight, | |
"transformer.x_embedder.lora_B.weight": shape_expander_lora_B.weight, | |
} | |
with CaptureLogger(logger) as cap_logger: | |
pipe.load_lora_weights(lora_state_dict, "adapter-1") | |
self.assertTrue(check_if_lora_correctly_set(pipe.transformer), "Lora not correctly set in denoiser") | |
self.assertTrue(pipe.get_active_adapters() == ["adapter-1"]) | |
self.assertTrue(pipe.transformer.x_embedder.weight.data.shape[1] == 2 * in_features) | |
self.assertTrue(pipe.transformer.config.in_channels == 2 * in_features) | |
self.assertTrue(cap_logger.out.startswith("Expanding the nn.Linear input/output features for module")) | |
_, _, inputs = self.get_dummy_inputs(with_generator=False) | |
lora_output = pipe(**inputs, generator=torch.manual_seed(0))[0] | |
normal_lora_A = torch.nn.Linear(in_features, rank, bias=False) | |
normal_lora_B = torch.nn.Linear(rank, out_features, bias=False) | |
lora_state_dict = { | |
"transformer.x_embedder.lora_A.weight": normal_lora_A.weight, | |
"transformer.x_embedder.lora_B.weight": normal_lora_B.weight, | |
} | |
with CaptureLogger(logger) as cap_logger: | |
pipe.load_lora_weights(lora_state_dict, "adapter-2") | |
self.assertTrue(check_if_lora_correctly_set(pipe.transformer), "Lora not correctly set in denoiser") | |
self.assertTrue("The following LoRA modules were zero padded to match the state dict of" in cap_logger.out) | |
self.assertTrue(pipe.get_active_adapters() == ["adapter-2"]) | |
lora_output_2 = pipe(**inputs, generator=torch.manual_seed(0))[0] | |
self.assertFalse(np.allclose(lora_output, lora_output_2, atol=1e-3, rtol=1e-3)) | |
# Test the opposite case where the first lora has the correct input features and the second lora has expanded input features. | |
# This should raise a runtime error on input shapes being incompatible. | |
components, _, _ = self.get_dummy_components(FlowMatchEulerDiscreteScheduler) | |
# Change the transformer config to mimic a real use case. | |
num_channels_without_control = 4 | |
transformer = FluxTransformer2DModel.from_config( | |
components["transformer"].config, in_channels=num_channels_without_control | |
).to(torch_device) | |
components["transformer"] = transformer | |
pipe = self.pipeline_class(**components) | |
pipe = pipe.to(torch_device) | |
pipe.set_progress_bar_config(disable=None) | |
logger = logging.get_logger("diffusers.loaders.lora_pipeline") | |
logger.setLevel(logging.DEBUG) | |
out_features, in_features = pipe.transformer.x_embedder.weight.shape | |
rank = 4 | |
lora_state_dict = { | |
"transformer.x_embedder.lora_A.weight": normal_lora_A.weight, | |
"transformer.x_embedder.lora_B.weight": normal_lora_B.weight, | |
} | |
pipe.load_lora_weights(lora_state_dict, "adapter-1") | |
self.assertTrue(check_if_lora_correctly_set(pipe.transformer), "Lora not correctly set in denoiser") | |
self.assertTrue(pipe.transformer.x_embedder.weight.data.shape[1] == in_features) | |
self.assertTrue(pipe.transformer.config.in_channels == in_features) | |
lora_state_dict = { | |
"transformer.x_embedder.lora_A.weight": shape_expander_lora_A.weight, | |
"transformer.x_embedder.lora_B.weight": shape_expander_lora_B.weight, | |
} | |
# We should check for input shapes being incompatible here. But because above mentioned issue is | |
# not a supported use case, and because of the PEFT renaming, we will currently have a shape | |
# mismatch error. | |
self.assertRaisesRegex( | |
RuntimeError, | |
"size mismatch for x_embedder.lora_A.adapter-2.weight", | |
pipe.load_lora_weights, | |
lora_state_dict, | |
"adapter-2", | |
) | |
def test_fuse_expanded_lora_with_regular_lora(self): | |
# This test checks if it works when a lora with expanded shapes (like control loras) but | |
# another lora with correct shapes is loaded. The opposite direction isn't supported and is | |
# tested with it. | |
components, _, _ = self.get_dummy_components(FlowMatchEulerDiscreteScheduler) | |
# Change the transformer config to mimic a real use case. | |
num_channels_without_control = 4 | |
transformer = FluxTransformer2DModel.from_config( | |
components["transformer"].config, in_channels=num_channels_without_control | |
).to(torch_device) | |
components["transformer"] = transformer | |
pipe = self.pipeline_class(**components) | |
pipe = pipe.to(torch_device) | |
pipe.set_progress_bar_config(disable=None) | |
logger = logging.get_logger("diffusers.loaders.lora_pipeline") | |
logger.setLevel(logging.DEBUG) | |
out_features, in_features = pipe.transformer.x_embedder.weight.shape | |
rank = 4 | |
shape_expander_lora_A = torch.nn.Linear(2 * in_features, rank, bias=False) | |
shape_expander_lora_B = torch.nn.Linear(rank, out_features, bias=False) | |
lora_state_dict = { | |
"transformer.x_embedder.lora_A.weight": shape_expander_lora_A.weight, | |
"transformer.x_embedder.lora_B.weight": shape_expander_lora_B.weight, | |
} | |
pipe.load_lora_weights(lora_state_dict, "adapter-1") | |
self.assertTrue(check_if_lora_correctly_set(pipe.transformer), "Lora not correctly set in denoiser") | |
_, _, inputs = self.get_dummy_inputs(with_generator=False) | |
lora_output = pipe(**inputs, generator=torch.manual_seed(0))[0] | |
normal_lora_A = torch.nn.Linear(in_features, rank, bias=False) | |
normal_lora_B = torch.nn.Linear(rank, out_features, bias=False) | |
lora_state_dict = { | |
"transformer.x_embedder.lora_A.weight": normal_lora_A.weight, | |
"transformer.x_embedder.lora_B.weight": normal_lora_B.weight, | |
} | |
pipe.load_lora_weights(lora_state_dict, "adapter-2") | |
self.assertTrue(check_if_lora_correctly_set(pipe.transformer), "Lora not correctly set in denoiser") | |
lora_output_2 = pipe(**inputs, generator=torch.manual_seed(0))[0] | |
pipe.set_adapters(["adapter-1", "adapter-2"], [1.0, 1.0]) | |
lora_output_3 = pipe(**inputs, generator=torch.manual_seed(0))[0] | |
self.assertFalse(np.allclose(lora_output, lora_output_2, atol=1e-3, rtol=1e-3)) | |
self.assertFalse(np.allclose(lora_output, lora_output_3, atol=1e-3, rtol=1e-3)) | |
self.assertFalse(np.allclose(lora_output_2, lora_output_3, atol=1e-3, rtol=1e-3)) | |
pipe.fuse_lora(lora_scale=1.0, adapter_names=["adapter-1", "adapter-2"]) | |
lora_output_4 = pipe(**inputs, generator=torch.manual_seed(0))[0] | |
self.assertTrue(np.allclose(lora_output_3, lora_output_4, atol=1e-3, rtol=1e-3)) | |
def test_load_regular_lora(self): | |
# This test checks if a regular lora (think of one trained on Flux.1 Dev for example) can be loaded | |
# into the transformer with more input channels than Flux.1 Dev, for example. Some examples of those | |
# transformers include Flux Fill, Flux Control, etc. | |
components, _, _ = self.get_dummy_components(FlowMatchEulerDiscreteScheduler) | |
pipe = self.pipeline_class(**components) | |
pipe = pipe.to(torch_device) | |
pipe.set_progress_bar_config(disable=None) | |
_, _, inputs = self.get_dummy_inputs(with_generator=False) | |
original_output = pipe(**inputs, generator=torch.manual_seed(0))[0] | |
out_features, in_features = pipe.transformer.x_embedder.weight.shape | |
rank = 4 | |
in_features = in_features // 2 # to mimic the Flux.1-Dev LoRA. | |
normal_lora_A = torch.nn.Linear(in_features, rank, bias=False) | |
normal_lora_B = torch.nn.Linear(rank, out_features, bias=False) | |
lora_state_dict = { | |
"transformer.x_embedder.lora_A.weight": normal_lora_A.weight, | |
"transformer.x_embedder.lora_B.weight": normal_lora_B.weight, | |
} | |
logger = logging.get_logger("diffusers.loaders.lora_pipeline") | |
logger.setLevel(logging.INFO) | |
with CaptureLogger(logger) as cap_logger: | |
pipe.load_lora_weights(lora_state_dict, "adapter-1") | |
self.assertTrue(check_if_lora_correctly_set(pipe.transformer), "Lora not correctly set in denoiser") | |
lora_output = pipe(**inputs, generator=torch.manual_seed(0))[0] | |
self.assertTrue("The following LoRA modules were zero padded to match the state dict of" in cap_logger.out) | |
self.assertTrue(pipe.transformer.x_embedder.weight.data.shape[1] == in_features * 2) | |
self.assertFalse(np.allclose(original_output, lora_output, atol=1e-3, rtol=1e-3)) | |
def test_lora_unload_with_parameter_expanded_shapes(self): | |
components, _, _ = self.get_dummy_components(FlowMatchEulerDiscreteScheduler) | |
logger = logging.get_logger("diffusers.loaders.lora_pipeline") | |
logger.setLevel(logging.DEBUG) | |
# Change the transformer config to mimic a real use case. | |
num_channels_without_control = 4 | |
transformer = FluxTransformer2DModel.from_config( | |
components["transformer"].config, in_channels=num_channels_without_control | |
).to(torch_device) | |
self.assertTrue( | |
transformer.config.in_channels == num_channels_without_control, | |
f"Expected {num_channels_without_control} channels in the modified transformer but has {transformer.config.in_channels=}", | |
) | |
# This should be initialized with a Flux pipeline variant that doesn't accept `control_image`. | |
components["transformer"] = transformer | |
pipe = FluxPipeline(**components) | |
pipe = pipe.to(torch_device) | |
pipe.set_progress_bar_config(disable=None) | |
_, _, inputs = self.get_dummy_inputs(with_generator=False) | |
control_image = inputs.pop("control_image") | |
original_out = pipe(**inputs, generator=torch.manual_seed(0))[0] | |
control_pipe = self.pipeline_class(**components) | |
out_features, in_features = control_pipe.transformer.x_embedder.weight.shape | |
rank = 4 | |
dummy_lora_A = torch.nn.Linear(2 * in_features, rank, bias=False) | |
dummy_lora_B = torch.nn.Linear(rank, out_features, bias=False) | |
lora_state_dict = { | |
"transformer.x_embedder.lora_A.weight": dummy_lora_A.weight, | |
"transformer.x_embedder.lora_B.weight": dummy_lora_B.weight, | |
} | |
with CaptureLogger(logger) as cap_logger: | |
control_pipe.load_lora_weights(lora_state_dict, "adapter-1") | |
self.assertTrue(check_if_lora_correctly_set(pipe.transformer), "Lora not correctly set in denoiser") | |
inputs["control_image"] = control_image | |
lora_out = control_pipe(**inputs, generator=torch.manual_seed(0))[0] | |
self.assertFalse(np.allclose(original_out, lora_out, rtol=1e-4, atol=1e-4)) | |
self.assertTrue(pipe.transformer.x_embedder.weight.data.shape[1] == 2 * in_features) | |
self.assertTrue(pipe.transformer.config.in_channels == 2 * in_features) | |
self.assertTrue(cap_logger.out.startswith("Expanding the nn.Linear input/output features for module")) | |
control_pipe.unload_lora_weights(reset_to_overwritten_params=True) | |
self.assertTrue( | |
control_pipe.transformer.config.in_channels == num_channels_without_control, | |
f"Expected {num_channels_without_control} channels in the modified transformer but has {control_pipe.transformer.config.in_channels=}", | |
) | |
loaded_pipe = FluxPipeline.from_pipe(control_pipe) | |
self.assertTrue( | |
loaded_pipe.transformer.config.in_channels == num_channels_without_control, | |
f"Expected {num_channels_without_control} channels in the modified transformer but has {loaded_pipe.transformer.config.in_channels=}", | |
) | |
inputs.pop("control_image") | |
unloaded_lora_out = loaded_pipe(**inputs, generator=torch.manual_seed(0))[0] | |
self.assertFalse(np.allclose(unloaded_lora_out, lora_out, rtol=1e-4, atol=1e-4)) | |
self.assertTrue(np.allclose(unloaded_lora_out, original_out, atol=1e-4, rtol=1e-4)) | |
self.assertTrue(pipe.transformer.x_embedder.weight.data.shape[1] == in_features) | |
self.assertTrue(pipe.transformer.config.in_channels == in_features) | |
def test_lora_unload_with_parameter_expanded_shapes_and_no_reset(self): | |
components, _, _ = self.get_dummy_components(FlowMatchEulerDiscreteScheduler) | |
logger = logging.get_logger("diffusers.loaders.lora_pipeline") | |
logger.setLevel(logging.DEBUG) | |
# Change the transformer config to mimic a real use case. | |
num_channels_without_control = 4 | |
transformer = FluxTransformer2DModel.from_config( | |
components["transformer"].config, in_channels=num_channels_without_control | |
).to(torch_device) | |
self.assertTrue( | |
transformer.config.in_channels == num_channels_without_control, | |
f"Expected {num_channels_without_control} channels in the modified transformer but has {transformer.config.in_channels=}", | |
) | |
# This should be initialized with a Flux pipeline variant that doesn't accept `control_image`. | |
components["transformer"] = transformer | |
pipe = FluxPipeline(**components) | |
pipe = pipe.to(torch_device) | |
pipe.set_progress_bar_config(disable=None) | |
_, _, inputs = self.get_dummy_inputs(with_generator=False) | |
control_image = inputs.pop("control_image") | |
original_out = pipe(**inputs, generator=torch.manual_seed(0))[0] | |
control_pipe = self.pipeline_class(**components) | |
out_features, in_features = control_pipe.transformer.x_embedder.weight.shape | |
rank = 4 | |
dummy_lora_A = torch.nn.Linear(2 * in_features, rank, bias=False) | |
dummy_lora_B = torch.nn.Linear(rank, out_features, bias=False) | |
lora_state_dict = { | |
"transformer.x_embedder.lora_A.weight": dummy_lora_A.weight, | |
"transformer.x_embedder.lora_B.weight": dummy_lora_B.weight, | |
} | |
with CaptureLogger(logger) as cap_logger: | |
control_pipe.load_lora_weights(lora_state_dict, "adapter-1") | |
self.assertTrue(check_if_lora_correctly_set(pipe.transformer), "Lora not correctly set in denoiser") | |
inputs["control_image"] = control_image | |
lora_out = control_pipe(**inputs, generator=torch.manual_seed(0))[0] | |
self.assertFalse(np.allclose(original_out, lora_out, rtol=1e-4, atol=1e-4)) | |
self.assertTrue(pipe.transformer.x_embedder.weight.data.shape[1] == 2 * in_features) | |
self.assertTrue(pipe.transformer.config.in_channels == 2 * in_features) | |
self.assertTrue(cap_logger.out.startswith("Expanding the nn.Linear input/output features for module")) | |
control_pipe.unload_lora_weights(reset_to_overwritten_params=False) | |
self.assertTrue( | |
control_pipe.transformer.config.in_channels == 2 * num_channels_without_control, | |
f"Expected {num_channels_without_control} channels in the modified transformer but has {control_pipe.transformer.config.in_channels=}", | |
) | |
no_lora_out = control_pipe(**inputs, generator=torch.manual_seed(0))[0] | |
self.assertFalse(np.allclose(no_lora_out, lora_out, rtol=1e-4, atol=1e-4)) | |
self.assertTrue(pipe.transformer.x_embedder.weight.data.shape[1] == in_features * 2) | |
self.assertTrue(pipe.transformer.config.in_channels == in_features * 2) | |
def test_simple_inference_with_text_denoiser_block_scale_for_all_dict_options(self): | |
pass | |
def test_modify_padding_mode(self): | |
pass | |
class FluxLoRAIntegrationTests(unittest.TestCase): | |
"""internal note: The integration slices were obtained on audace. | |
torch: 2.6.0.dev20241006+cu124 with CUDA 12.5. Need the same setup for the | |
assertions to pass. | |
""" | |
num_inference_steps = 10 | |
seed = 0 | |
def setUp(self): | |
super().setUp() | |
gc.collect() | |
torch.cuda.empty_cache() | |
self.pipeline = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16) | |
def tearDown(self): | |
super().tearDown() | |
del self.pipeline | |
gc.collect() | |
torch.cuda.empty_cache() | |
def test_flux_the_last_ben(self): | |
self.pipeline.load_lora_weights("TheLastBen/Jon_Snow_Flux_LoRA", weight_name="jon_snow.safetensors") | |
self.pipeline.fuse_lora() | |
self.pipeline.unload_lora_weights() | |
# Instead of calling `enable_model_cpu_offload()`, we do a cuda placement here because the CI | |
# run supports it. We have about 34GB RAM in the CI runner which kills the test when run with | |
# `enable_model_cpu_offload()`. We repeat this for the other tests, too. | |
self.pipeline = self.pipeline.to(torch_device) | |
prompt = "jon snow eating pizza with ketchup" | |
out = self.pipeline( | |
prompt, | |
num_inference_steps=self.num_inference_steps, | |
guidance_scale=4.0, | |
output_type="np", | |
generator=torch.manual_seed(self.seed), | |
).images | |
out_slice = out[0, -3:, -3:, -1].flatten() | |
expected_slice = np.array([0.1855, 0.1855, 0.1836, 0.1855, 0.1836, 0.1875, 0.1777, 0.1758, 0.2246]) | |
max_diff = numpy_cosine_similarity_distance(expected_slice.flatten(), out_slice) | |
assert max_diff < 1e-3 | |
def test_flux_kohya(self): | |
self.pipeline.load_lora_weights("Norod78/brain-slug-flux") | |
self.pipeline.fuse_lora() | |
self.pipeline.unload_lora_weights() | |
self.pipeline = self.pipeline.to(torch_device) | |
prompt = "The cat with a brain slug earring" | |
out = self.pipeline( | |
prompt, | |
num_inference_steps=self.num_inference_steps, | |
guidance_scale=4.5, | |
output_type="np", | |
generator=torch.manual_seed(self.seed), | |
).images | |
out_slice = out[0, -3:, -3:, -1].flatten() | |
expected_slice = np.array([0.6367, 0.6367, 0.6328, 0.6367, 0.6328, 0.6289, 0.6367, 0.6328, 0.6484]) | |
max_diff = numpy_cosine_similarity_distance(expected_slice.flatten(), out_slice) | |
assert max_diff < 1e-3 | |
def test_flux_kohya_with_text_encoder(self): | |
self.pipeline.load_lora_weights("cocktailpeanut/optimus", weight_name="optimus.safetensors") | |
self.pipeline.fuse_lora() | |
self.pipeline.unload_lora_weights() | |
self.pipeline = self.pipeline.to(torch_device) | |
prompt = "optimus is cleaning the house with broomstick" | |
out = self.pipeline( | |
prompt, | |
num_inference_steps=self.num_inference_steps, | |
guidance_scale=4.5, | |
output_type="np", | |
generator=torch.manual_seed(self.seed), | |
).images | |
out_slice = out[0, -3:, -3:, -1].flatten() | |
expected_slice = np.array([0.4023, 0.4023, 0.4023, 0.3965, 0.3984, 0.3965, 0.3926, 0.3906, 0.4219]) | |
max_diff = numpy_cosine_similarity_distance(expected_slice.flatten(), out_slice) | |
assert max_diff < 1e-3 | |
def test_flux_xlabs(self): | |
self.pipeline.load_lora_weights("XLabs-AI/flux-lora-collection", weight_name="disney_lora.safetensors") | |
self.pipeline.fuse_lora() | |
self.pipeline.unload_lora_weights() | |
self.pipeline = self.pipeline.to(torch_device) | |
prompt = "A blue jay standing on a large basket of rainbow macarons, disney style" | |
out = self.pipeline( | |
prompt, | |
num_inference_steps=self.num_inference_steps, | |
guidance_scale=3.5, | |
output_type="np", | |
generator=torch.manual_seed(self.seed), | |
).images | |
out_slice = out[0, -3:, -3:, -1].flatten() | |
expected_slice = np.array([0.3965, 0.4180, 0.4434, 0.4082, 0.4375, 0.4590, 0.4141, 0.4375, 0.4980]) | |
max_diff = numpy_cosine_similarity_distance(expected_slice.flatten(), out_slice) | |
assert max_diff < 1e-3 | |
def test_flux_xlabs_load_lora_with_single_blocks(self): | |
self.pipeline.load_lora_weights( | |
"salinasr/test_xlabs_flux_lora_with_singleblocks", weight_name="lora.safetensors" | |
) | |
self.pipeline.fuse_lora() | |
self.pipeline.unload_lora_weights() | |
self.pipeline.enable_model_cpu_offload() | |
prompt = "a wizard mouse playing chess" | |
out = self.pipeline( | |
prompt, | |
num_inference_steps=self.num_inference_steps, | |
guidance_scale=3.5, | |
output_type="np", | |
generator=torch.manual_seed(self.seed), | |
).images | |
out_slice = out[0, -3:, -3:, -1].flatten() | |
expected_slice = np.array( | |
[0.04882812, 0.04101562, 0.04882812, 0.03710938, 0.02929688, 0.02734375, 0.0234375, 0.01757812, 0.0390625] | |
) | |
max_diff = numpy_cosine_similarity_distance(expected_slice.flatten(), out_slice) | |
assert max_diff < 1e-3 | |
class FluxControlLoRAIntegrationTests(unittest.TestCase): | |
num_inference_steps = 10 | |
seed = 0 | |
prompt = "A robot made of exotic candies and chocolates of different kinds." | |
def setUp(self): | |
super().setUp() | |
gc.collect() | |
torch.cuda.empty_cache() | |
self.pipeline = FluxControlPipeline.from_pretrained( | |
"black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16 | |
).to("cuda") | |
def tearDown(self): | |
super().tearDown() | |
gc.collect() | |
torch.cuda.empty_cache() | |
def test_lora(self, lora_ckpt_id): | |
self.pipeline.load_lora_weights(lora_ckpt_id) | |
self.pipeline.fuse_lora() | |
self.pipeline.unload_lora_weights() | |
if "Canny" in lora_ckpt_id: | |
control_image = load_image( | |
"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/flux-control-lora/canny_condition_image.png" | |
) | |
else: | |
control_image = load_image( | |
"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/flux-control-lora/depth_condition_image.png" | |
) | |
image = self.pipeline( | |
prompt=self.prompt, | |
control_image=control_image, | |
height=1024, | |
width=1024, | |
num_inference_steps=self.num_inference_steps, | |
guidance_scale=30.0 if "Canny" in lora_ckpt_id else 10.0, | |
output_type="np", | |
generator=torch.manual_seed(self.seed), | |
).images | |
out_slice = image[0, -3:, -3:, -1].flatten() | |
if "Canny" in lora_ckpt_id: | |
expected_slice = np.array([0.8438, 0.8438, 0.8438, 0.8438, 0.8438, 0.8398, 0.8438, 0.8438, 0.8516]) | |
else: | |
expected_slice = np.array([0.8203, 0.8320, 0.8359, 0.8203, 0.8281, 0.8281, 0.8203, 0.8242, 0.8359]) | |
max_diff = numpy_cosine_similarity_distance(expected_slice.flatten(), out_slice) | |
assert max_diff < 1e-3 | |
def test_lora_with_turbo(self, lora_ckpt_id): | |
self.pipeline.load_lora_weights(lora_ckpt_id) | |
self.pipeline.load_lora_weights("ByteDance/Hyper-SD", weight_name="Hyper-FLUX.1-dev-8steps-lora.safetensors") | |
self.pipeline.fuse_lora() | |
self.pipeline.unload_lora_weights() | |
if "Canny" in lora_ckpt_id: | |
control_image = load_image( | |
"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/flux-control-lora/canny_condition_image.png" | |
) | |
else: | |
control_image = load_image( | |
"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/flux-control-lora/depth_condition_image.png" | |
) | |
image = self.pipeline( | |
prompt=self.prompt, | |
control_image=control_image, | |
height=1024, | |
width=1024, | |
num_inference_steps=self.num_inference_steps, | |
guidance_scale=30.0 if "Canny" in lora_ckpt_id else 10.0, | |
output_type="np", | |
generator=torch.manual_seed(self.seed), | |
).images | |
out_slice = image[0, -3:, -3:, -1].flatten() | |
if "Canny" in lora_ckpt_id: | |
expected_slice = np.array([0.6562, 0.7266, 0.7578, 0.6367, 0.6758, 0.7031, 0.6172, 0.6602, 0.6484]) | |
else: | |
expected_slice = np.array([0.6680, 0.7344, 0.7656, 0.6484, 0.6875, 0.7109, 0.6328, 0.6719, 0.6562]) | |
max_diff = numpy_cosine_similarity_distance(expected_slice.flatten(), out_slice) | |
assert max_diff < 1e-3 | |