Spaces:
Running
on
Zero
Running
on
Zero
# coding=utf-8 | |
# Copyright 2024 HuggingFace Inc. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import unittest | |
import torch | |
from diffusers import AutoencoderKLHunyuanVideo | |
from diffusers.utils.testing_utils import ( | |
enable_full_determinism, | |
floats_tensor, | |
torch_device, | |
) | |
from ..test_modeling_common import ModelTesterMixin, UNetTesterMixin | |
enable_full_determinism() | |
class AutoencoderKLHunyuanVideoTests(ModelTesterMixin, UNetTesterMixin, unittest.TestCase): | |
model_class = AutoencoderKLHunyuanVideo | |
main_input_name = "sample" | |
base_precision = 1e-2 | |
def get_autoencoder_kl_hunyuan_video_config(self): | |
return { | |
"in_channels": 3, | |
"out_channels": 3, | |
"latent_channels": 4, | |
"down_block_types": ( | |
"HunyuanVideoDownBlock3D", | |
"HunyuanVideoDownBlock3D", | |
"HunyuanVideoDownBlock3D", | |
"HunyuanVideoDownBlock3D", | |
), | |
"up_block_types": ( | |
"HunyuanVideoUpBlock3D", | |
"HunyuanVideoUpBlock3D", | |
"HunyuanVideoUpBlock3D", | |
"HunyuanVideoUpBlock3D", | |
), | |
"block_out_channels": (8, 8, 8, 8), | |
"layers_per_block": 1, | |
"act_fn": "silu", | |
"norm_num_groups": 4, | |
"scaling_factor": 0.476986, | |
"spatial_compression_ratio": 8, | |
"temporal_compression_ratio": 4, | |
"mid_block_add_attention": True, | |
} | |
def dummy_input(self): | |
batch_size = 2 | |
num_frames = 9 | |
num_channels = 3 | |
sizes = (16, 16) | |
image = floats_tensor((batch_size, num_channels, num_frames) + sizes).to(torch_device) | |
return {"sample": image} | |
def input_shape(self): | |
return (3, 9, 16, 16) | |
def output_shape(self): | |
return (3, 9, 16, 16) | |
def prepare_init_args_and_inputs_for_common(self): | |
init_dict = self.get_autoencoder_kl_hunyuan_video_config() | |
inputs_dict = self.dummy_input | |
return init_dict, inputs_dict | |
def test_enable_disable_tiling(self): | |
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() | |
torch.manual_seed(0) | |
model = self.model_class(**init_dict).to(torch_device) | |
inputs_dict.update({"return_dict": False}) | |
torch.manual_seed(0) | |
output_without_tiling = model(**inputs_dict, generator=torch.manual_seed(0))[0] | |
torch.manual_seed(0) | |
model.enable_tiling() | |
output_with_tiling = model(**inputs_dict, generator=torch.manual_seed(0))[0] | |
self.assertLess( | |
(output_without_tiling.detach().cpu().numpy() - output_with_tiling.detach().cpu().numpy()).max(), | |
0.5, | |
"VAE tiling should not affect the inference results", | |
) | |
torch.manual_seed(0) | |
model.disable_tiling() | |
output_without_tiling_2 = model(**inputs_dict, generator=torch.manual_seed(0))[0] | |
self.assertEqual( | |
output_without_tiling.detach().cpu().numpy().all(), | |
output_without_tiling_2.detach().cpu().numpy().all(), | |
"Without tiling outputs should match with the outputs when tiling is manually disabled.", | |
) | |
def test_enable_disable_slicing(self): | |
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() | |
torch.manual_seed(0) | |
model = self.model_class(**init_dict).to(torch_device) | |
inputs_dict.update({"return_dict": False}) | |
torch.manual_seed(0) | |
output_without_slicing = model(**inputs_dict, generator=torch.manual_seed(0))[0] | |
torch.manual_seed(0) | |
model.enable_slicing() | |
output_with_slicing = model(**inputs_dict, generator=torch.manual_seed(0))[0] | |
self.assertLess( | |
(output_without_slicing.detach().cpu().numpy() - output_with_slicing.detach().cpu().numpy()).max(), | |
0.5, | |
"VAE slicing should not affect the inference results", | |
) | |
torch.manual_seed(0) | |
model.disable_slicing() | |
output_without_slicing_2 = model(**inputs_dict, generator=torch.manual_seed(0))[0] | |
self.assertEqual( | |
output_without_slicing.detach().cpu().numpy().all(), | |
output_without_slicing_2.detach().cpu().numpy().all(), | |
"Without slicing outputs should match with the outputs when slicing is manually disabled.", | |
) | |
def test_gradient_checkpointing_is_applied(self): | |
expected_set = { | |
"HunyuanVideoDecoder3D", | |
"HunyuanVideoDownBlock3D", | |
"HunyuanVideoEncoder3D", | |
"HunyuanVideoMidBlock3D", | |
"HunyuanVideoUpBlock3D", | |
} | |
super().test_gradient_checkpointing_is_applied(expected_set=expected_set) | |
# We need to overwrite this test because the base test does not account length of down_block_types | |
def test_forward_with_norm_groups(self): | |
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() | |
init_dict["norm_num_groups"] = 16 | |
init_dict["block_out_channels"] = (16, 16, 16, 16) | |
model = self.model_class(**init_dict) | |
model.to(torch_device) | |
model.eval() | |
with torch.no_grad(): | |
output = model(**inputs_dict) | |
if isinstance(output, dict): | |
output = output.to_tuple()[0] | |
self.assertIsNotNone(output) | |
expected_shape = inputs_dict["sample"].shape | |
self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match") | |
def test_outputs_equivalence(self): | |
pass | |