Spaces:
Running
on
Zero
Running
on
Zero
# Copyright 2024 The HuggingFace Team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import gc | |
import inspect | |
import os | |
import tempfile | |
import unittest | |
import numpy as np | |
import torch | |
from transformers import AutoTokenizer, T5Config, T5EncoderModel | |
from diffusers import AllegroPipeline, AllegroTransformer3DModel, AutoencoderKLAllegro, DDIMScheduler | |
from diffusers.utils.testing_utils import ( | |
enable_full_determinism, | |
numpy_cosine_similarity_distance, | |
require_hf_hub_version_greater, | |
require_torch_accelerator, | |
require_transformers_version_greater, | |
slow, | |
torch_device, | |
) | |
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS | |
from ..test_pipelines_common import PipelineTesterMixin, PyramidAttentionBroadcastTesterMixin, to_np | |
enable_full_determinism() | |
class AllegroPipelineFastTests(PipelineTesterMixin, PyramidAttentionBroadcastTesterMixin, unittest.TestCase): | |
pipeline_class = AllegroPipeline | |
params = TEXT_TO_IMAGE_PARAMS - {"cross_attention_kwargs"} | |
batch_params = TEXT_TO_IMAGE_BATCH_PARAMS | |
image_params = TEXT_TO_IMAGE_IMAGE_PARAMS | |
image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS | |
required_optional_params = frozenset( | |
[ | |
"num_inference_steps", | |
"generator", | |
"latents", | |
"return_dict", | |
"callback_on_step_end", | |
"callback_on_step_end_tensor_inputs", | |
] | |
) | |
test_xformers_attention = False | |
test_layerwise_casting = True | |
def get_dummy_components(self, num_layers: int = 1): | |
torch.manual_seed(0) | |
transformer = AllegroTransformer3DModel( | |
num_attention_heads=2, | |
attention_head_dim=12, | |
in_channels=4, | |
out_channels=4, | |
num_layers=num_layers, | |
cross_attention_dim=24, | |
sample_width=8, | |
sample_height=8, | |
sample_frames=8, | |
caption_channels=24, | |
) | |
torch.manual_seed(0) | |
vae = AutoencoderKLAllegro( | |
in_channels=3, | |
out_channels=3, | |
down_block_types=( | |
"AllegroDownBlock3D", | |
"AllegroDownBlock3D", | |
"AllegroDownBlock3D", | |
"AllegroDownBlock3D", | |
), | |
up_block_types=( | |
"AllegroUpBlock3D", | |
"AllegroUpBlock3D", | |
"AllegroUpBlock3D", | |
"AllegroUpBlock3D", | |
), | |
block_out_channels=(8, 8, 8, 8), | |
latent_channels=4, | |
layers_per_block=1, | |
norm_num_groups=2, | |
temporal_compression_ratio=4, | |
) | |
# TODO(aryan): Only for now, since VAE decoding without tiling is not yet implemented here | |
vae.enable_tiling() | |
torch.manual_seed(0) | |
scheduler = DDIMScheduler() | |
text_encoder_config = T5Config( | |
**{ | |
"d_ff": 37, | |
"d_kv": 8, | |
"d_model": 24, | |
"num_decoder_layers": 2, | |
"num_heads": 4, | |
"num_layers": 2, | |
"relative_attention_num_buckets": 8, | |
"vocab_size": 1103, | |
} | |
) | |
text_encoder = T5EncoderModel(text_encoder_config) | |
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5") | |
components = { | |
"transformer": transformer, | |
"vae": vae, | |
"scheduler": scheduler, | |
"text_encoder": text_encoder, | |
"tokenizer": tokenizer, | |
} | |
return components | |
def get_dummy_inputs(self, device, seed=0): | |
if str(device).startswith("mps"): | |
generator = torch.manual_seed(seed) | |
else: | |
generator = torch.Generator(device=device).manual_seed(seed) | |
inputs = { | |
"prompt": "dance monkey", | |
"negative_prompt": "", | |
"generator": generator, | |
"num_inference_steps": 2, | |
"guidance_scale": 6.0, | |
"height": 16, | |
"width": 16, | |
"num_frames": 8, | |
"max_sequence_length": 16, | |
"output_type": "pt", | |
} | |
return inputs | |
def test_save_load_local(self): | |
pass | |
def test_save_load_optional_components(self): | |
pass | |
def test_inference(self): | |
device = "cpu" | |
components = self.get_dummy_components() | |
pipe = self.pipeline_class(**components) | |
pipe.to(device) | |
pipe.set_progress_bar_config(disable=None) | |
inputs = self.get_dummy_inputs(device) | |
video = pipe(**inputs).frames | |
generated_video = video[0] | |
self.assertEqual(generated_video.shape, (8, 3, 16, 16)) | |
expected_video = torch.randn(8, 3, 16, 16) | |
max_diff = np.abs(generated_video - expected_video).max() | |
self.assertLessEqual(max_diff, 1e10) | |
def test_callback_inputs(self): | |
sig = inspect.signature(self.pipeline_class.__call__) | |
has_callback_tensor_inputs = "callback_on_step_end_tensor_inputs" in sig.parameters | |
has_callback_step_end = "callback_on_step_end" in sig.parameters | |
if not (has_callback_tensor_inputs and has_callback_step_end): | |
return | |
components = self.get_dummy_components() | |
pipe = self.pipeline_class(**components) | |
pipe = pipe.to(torch_device) | |
pipe.set_progress_bar_config(disable=None) | |
self.assertTrue( | |
hasattr(pipe, "_callback_tensor_inputs"), | |
f" {self.pipeline_class} should have `_callback_tensor_inputs` that defines a list of tensor variables its callback function can use as inputs", | |
) | |
def callback_inputs_subset(pipe, i, t, callback_kwargs): | |
# iterate over callback args | |
for tensor_name, tensor_value in callback_kwargs.items(): | |
# check that we're only passing in allowed tensor inputs | |
assert tensor_name in pipe._callback_tensor_inputs | |
return callback_kwargs | |
def callback_inputs_all(pipe, i, t, callback_kwargs): | |
for tensor_name in pipe._callback_tensor_inputs: | |
assert tensor_name in callback_kwargs | |
# iterate over callback args | |
for tensor_name, tensor_value in callback_kwargs.items(): | |
# check that we're only passing in allowed tensor inputs | |
assert tensor_name in pipe._callback_tensor_inputs | |
return callback_kwargs | |
inputs = self.get_dummy_inputs(torch_device) | |
# Test passing in a subset | |
inputs["callback_on_step_end"] = callback_inputs_subset | |
inputs["callback_on_step_end_tensor_inputs"] = ["latents"] | |
output = pipe(**inputs)[0] | |
# Test passing in a everything | |
inputs["callback_on_step_end"] = callback_inputs_all | |
inputs["callback_on_step_end_tensor_inputs"] = pipe._callback_tensor_inputs | |
output = pipe(**inputs)[0] | |
def callback_inputs_change_tensor(pipe, i, t, callback_kwargs): | |
is_last = i == (pipe.num_timesteps - 1) | |
if is_last: | |
callback_kwargs["latents"] = torch.zeros_like(callback_kwargs["latents"]) | |
return callback_kwargs | |
inputs["callback_on_step_end"] = callback_inputs_change_tensor | |
inputs["callback_on_step_end_tensor_inputs"] = pipe._callback_tensor_inputs | |
output = pipe(**inputs)[0] | |
assert output.abs().sum() < 1e10 | |
def test_inference_batch_single_identical(self): | |
self._test_inference_batch_single_identical(batch_size=3, expected_max_diff=1e-3) | |
def test_attention_slicing_forward_pass( | |
self, test_max_difference=True, test_mean_pixel_difference=True, expected_max_diff=1e-3 | |
): | |
if not self.test_attention_slicing: | |
return | |
components = self.get_dummy_components() | |
pipe = self.pipeline_class(**components) | |
for component in pipe.components.values(): | |
if hasattr(component, "set_default_attn_processor"): | |
component.set_default_attn_processor() | |
pipe.to(torch_device) | |
pipe.set_progress_bar_config(disable=None) | |
generator_device = "cpu" | |
inputs = self.get_dummy_inputs(generator_device) | |
output_without_slicing = pipe(**inputs)[0] | |
pipe.enable_attention_slicing(slice_size=1) | |
inputs = self.get_dummy_inputs(generator_device) | |
output_with_slicing1 = pipe(**inputs)[0] | |
pipe.enable_attention_slicing(slice_size=2) | |
inputs = self.get_dummy_inputs(generator_device) | |
output_with_slicing2 = pipe(**inputs)[0] | |
if test_max_difference: | |
max_diff1 = np.abs(to_np(output_with_slicing1) - to_np(output_without_slicing)).max() | |
max_diff2 = np.abs(to_np(output_with_slicing2) - to_np(output_without_slicing)).max() | |
self.assertLess( | |
max(max_diff1, max_diff2), | |
expected_max_diff, | |
"Attention slicing should not affect the inference results", | |
) | |
# TODO(aryan) | |
def test_vae_tiling(self, expected_diff_max: float = 0.2): | |
generator_device = "cpu" | |
components = self.get_dummy_components() | |
pipe = self.pipeline_class(**components) | |
pipe.to("cpu") | |
pipe.set_progress_bar_config(disable=None) | |
# Without tiling | |
inputs = self.get_dummy_inputs(generator_device) | |
inputs["height"] = inputs["width"] = 128 | |
output_without_tiling = pipe(**inputs)[0] | |
# With tiling | |
pipe.vae.enable_tiling( | |
tile_sample_min_height=96, | |
tile_sample_min_width=96, | |
tile_overlap_factor_height=1 / 12, | |
tile_overlap_factor_width=1 / 12, | |
) | |
inputs = self.get_dummy_inputs(generator_device) | |
inputs["height"] = inputs["width"] = 128 | |
output_with_tiling = pipe(**inputs)[0] | |
self.assertLess( | |
(to_np(output_without_tiling) - to_np(output_with_tiling)).max(), | |
expected_diff_max, | |
"VAE tiling should not affect the inference results", | |
) | |
def test_save_load_dduf(self): | |
# reimplement because it needs `enable_tiling()` on the loaded pipe. | |
from huggingface_hub import export_folder_as_dduf | |
components = self.get_dummy_components() | |
pipe = self.pipeline_class(**components) | |
pipe = pipe.to(torch_device) | |
pipe.set_progress_bar_config(disable=None) | |
inputs = self.get_dummy_inputs(device="cpu") | |
inputs.pop("generator") | |
inputs["generator"] = torch.manual_seed(0) | |
pipeline_out = pipe(**inputs)[0].cpu() | |
with tempfile.TemporaryDirectory() as tmpdir: | |
dduf_filename = os.path.join(tmpdir, f"{pipe.__class__.__name__.lower()}.dduf") | |
pipe.save_pretrained(tmpdir, safe_serialization=True) | |
export_folder_as_dduf(dduf_filename, folder_path=tmpdir) | |
loaded_pipe = self.pipeline_class.from_pretrained(tmpdir, dduf_file=dduf_filename).to(torch_device) | |
loaded_pipe.vae.enable_tiling() | |
inputs["generator"] = torch.manual_seed(0) | |
loaded_pipeline_out = loaded_pipe(**inputs)[0].cpu() | |
assert np.allclose(pipeline_out, loaded_pipeline_out) | |
class AllegroPipelineIntegrationTests(unittest.TestCase): | |
prompt = "A painting of a squirrel eating a burger." | |
def setUp(self): | |
super().setUp() | |
gc.collect() | |
torch.cuda.empty_cache() | |
def tearDown(self): | |
super().tearDown() | |
gc.collect() | |
torch.cuda.empty_cache() | |
def test_allegro(self): | |
generator = torch.Generator("cpu").manual_seed(0) | |
pipe = AllegroPipeline.from_pretrained("rhymes-ai/Allegro", torch_dtype=torch.float16) | |
pipe.enable_model_cpu_offload(device=torch_device) | |
prompt = self.prompt | |
videos = pipe( | |
prompt=prompt, | |
height=720, | |
width=1280, | |
num_frames=88, | |
generator=generator, | |
num_inference_steps=2, | |
output_type="pt", | |
).frames | |
video = videos[0] | |
expected_video = torch.randn(1, 88, 720, 1280, 3).numpy() | |
max_diff = numpy_cosine_similarity_distance(video, expected_video) | |
assert max_diff < 1e-3, f"Max diff is too high. got {video}" | |