Spaces:
Running
on
Zero
Running
on
Zero
# coding=utf-8 | |
# Copyright 2024 HuggingFace Inc and The InstantX Team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import gc | |
import unittest | |
import numpy as np | |
import pytest | |
import torch | |
from huggingface_hub import hf_hub_download | |
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5TokenizerFast | |
from diffusers import ( | |
AutoencoderKL, | |
FlowMatchEulerDiscreteScheduler, | |
FluxControlNetPipeline, | |
FluxTransformer2DModel, | |
) | |
from diffusers.models import FluxControlNetModel | |
from diffusers.utils import load_image | |
from diffusers.utils.testing_utils import ( | |
enable_full_determinism, | |
nightly, | |
numpy_cosine_similarity_distance, | |
require_big_gpu_with_torch_cuda, | |
torch_device, | |
) | |
from diffusers.utils.torch_utils import randn_tensor | |
from ..test_pipelines_common import PipelineTesterMixin | |
enable_full_determinism() | |
class FluxControlNetPipelineFastTests(unittest.TestCase, PipelineTesterMixin): | |
pipeline_class = FluxControlNetPipeline | |
params = frozenset(["prompt", "height", "width", "guidance_scale", "prompt_embeds", "pooled_prompt_embeds"]) | |
batch_params = frozenset(["prompt"]) | |
test_layerwise_casting = True | |
def get_dummy_components(self): | |
torch.manual_seed(0) | |
transformer = FluxTransformer2DModel( | |
patch_size=1, | |
in_channels=16, | |
num_layers=1, | |
num_single_layers=1, | |
attention_head_dim=16, | |
num_attention_heads=2, | |
joint_attention_dim=32, | |
pooled_projection_dim=32, | |
axes_dims_rope=[4, 4, 8], | |
) | |
torch.manual_seed(0) | |
controlnet = FluxControlNetModel( | |
patch_size=1, | |
in_channels=16, | |
num_layers=1, | |
num_single_layers=1, | |
attention_head_dim=16, | |
num_attention_heads=2, | |
joint_attention_dim=32, | |
pooled_projection_dim=32, | |
axes_dims_rope=[4, 4, 8], | |
) | |
clip_text_encoder_config = CLIPTextConfig( | |
bos_token_id=0, | |
eos_token_id=2, | |
hidden_size=32, | |
intermediate_size=37, | |
layer_norm_eps=1e-05, | |
num_attention_heads=4, | |
num_hidden_layers=5, | |
pad_token_id=1, | |
vocab_size=1000, | |
hidden_act="gelu", | |
projection_dim=32, | |
) | |
torch.manual_seed(0) | |
text_encoder = CLIPTextModel(clip_text_encoder_config) | |
torch.manual_seed(0) | |
text_encoder_2 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5") | |
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") | |
tokenizer_2 = T5TokenizerFast.from_pretrained("hf-internal-testing/tiny-random-t5") | |
torch.manual_seed(0) | |
vae = AutoencoderKL( | |
sample_size=32, | |
in_channels=3, | |
out_channels=3, | |
block_out_channels=(4,), | |
layers_per_block=1, | |
latent_channels=4, | |
norm_num_groups=1, | |
use_quant_conv=False, | |
use_post_quant_conv=False, | |
shift_factor=0.0609, | |
scaling_factor=1.5035, | |
) | |
scheduler = FlowMatchEulerDiscreteScheduler() | |
return { | |
"scheduler": scheduler, | |
"text_encoder": text_encoder, | |
"text_encoder_2": text_encoder_2, | |
"tokenizer": tokenizer, | |
"tokenizer_2": tokenizer_2, | |
"transformer": transformer, | |
"vae": vae, | |
"controlnet": controlnet, | |
} | |
def get_dummy_inputs(self, device, seed=0): | |
if str(device).startswith("mps"): | |
generator = torch.manual_seed(seed) | |
else: | |
generator = torch.Generator(device="cpu").manual_seed(seed) | |
control_image = randn_tensor( | |
(1, 3, 32, 32), | |
generator=generator, | |
device=torch.device(device), | |
dtype=torch.float16, | |
) | |
controlnet_conditioning_scale = 0.5 | |
inputs = { | |
"prompt": "A painting of a squirrel eating a burger", | |
"generator": generator, | |
"num_inference_steps": 2, | |
"guidance_scale": 3.5, | |
"output_type": "np", | |
"control_image": control_image, | |
"controlnet_conditioning_scale": controlnet_conditioning_scale, | |
} | |
return inputs | |
def test_controlnet_flux(self): | |
components = self.get_dummy_components() | |
flux_pipe = FluxControlNetPipeline(**components) | |
flux_pipe = flux_pipe.to(torch_device, dtype=torch.float16) | |
flux_pipe.set_progress_bar_config(disable=None) | |
inputs = self.get_dummy_inputs(torch_device) | |
output = flux_pipe(**inputs) | |
image = output.images | |
image_slice = image[0, -3:, -3:, -1] | |
assert image.shape == (1, 32, 32, 3) | |
expected_slice = np.array( | |
[0.47387695, 0.63134766, 0.5605469, 0.61621094, 0.7207031, 0.7089844, 0.70410156, 0.6113281, 0.64160156] | |
) | |
assert ( | |
np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 | |
), f"Expected: {expected_slice}, got: {image_slice.flatten()}" | |
def test_xformers_attention_forwardGenerator_pass(self): | |
pass | |
def test_flux_image_output_shape(self): | |
pipe = self.pipeline_class(**self.get_dummy_components()).to(torch_device) | |
inputs = self.get_dummy_inputs(torch_device) | |
height_width_pairs = [(32, 32), (72, 56)] | |
for height, width in height_width_pairs: | |
expected_height = height - height % (pipe.vae_scale_factor * 2) | |
expected_width = width - width % (pipe.vae_scale_factor * 2) | |
inputs.update( | |
{ | |
"control_image": randn_tensor( | |
(1, 3, height, width), | |
device=torch_device, | |
dtype=torch.float16, | |
) | |
} | |
) | |
image = pipe(**inputs).images[0] | |
output_height, output_width, _ = image.shape | |
assert (output_height, output_width) == (expected_height, expected_width) | |
class FluxControlNetPipelineSlowTests(unittest.TestCase): | |
pipeline_class = FluxControlNetPipeline | |
def setUp(self): | |
super().setUp() | |
gc.collect() | |
torch.cuda.empty_cache() | |
def tearDown(self): | |
super().tearDown() | |
gc.collect() | |
torch.cuda.empty_cache() | |
def test_canny(self): | |
controlnet = FluxControlNetModel.from_pretrained( | |
"InstantX/FLUX.1-dev-Controlnet-Canny-alpha", torch_dtype=torch.bfloat16 | |
) | |
pipe = FluxControlNetPipeline.from_pretrained( | |
"black-forest-labs/FLUX.1-dev", | |
text_encoder=None, | |
text_encoder_2=None, | |
controlnet=controlnet, | |
torch_dtype=torch.bfloat16, | |
).to(torch_device) | |
pipe.set_progress_bar_config(disable=None) | |
generator = torch.Generator(device="cpu").manual_seed(0) | |
control_image = load_image( | |
"https://huggingface.co/InstantX/FLUX.1-dev-Controlnet-Canny-alpha/resolve/main/canny.jpg" | |
).resize((512, 512)) | |
prompt_embeds = torch.load( | |
hf_hub_download(repo_id="diffusers/test-slices", repo_type="dataset", filename="flux/prompt_embeds.pt") | |
).to(torch_device) | |
pooled_prompt_embeds = torch.load( | |
hf_hub_download( | |
repo_id="diffusers/test-slices", repo_type="dataset", filename="flux/pooled_prompt_embeds.pt" | |
) | |
).to(torch_device) | |
output = pipe( | |
prompt_embeds=prompt_embeds, | |
pooled_prompt_embeds=pooled_prompt_embeds, | |
control_image=control_image, | |
controlnet_conditioning_scale=0.6, | |
num_inference_steps=2, | |
guidance_scale=3.5, | |
max_sequence_length=256, | |
output_type="np", | |
height=512, | |
width=512, | |
generator=generator, | |
) | |
image = output.images[0] | |
assert image.shape == (512, 512, 3) | |
original_image = image[-3:, -3:, -1].flatten() | |
expected_image = np.array([0.2734, 0.2852, 0.2852, 0.2734, 0.2754, 0.2891, 0.2617, 0.2637, 0.2773]) | |
assert numpy_cosine_similarity_distance(original_image.flatten(), expected_image) < 1e-2 | |