Spaces:
Running
on
Zero
Running
on
Zero
import gc | |
import unittest | |
import numpy as np | |
import pytest | |
import torch | |
from diffusers import FluxPipeline, FluxPriorReduxPipeline | |
from diffusers.utils import load_image | |
from diffusers.utils.testing_utils import ( | |
numpy_cosine_similarity_distance, | |
require_big_gpu_with_torch_cuda, | |
slow, | |
torch_device, | |
) | |
class FluxReduxSlowTests(unittest.TestCase): | |
pipeline_class = FluxPriorReduxPipeline | |
repo_id = "YiYiXu/yiyi-redux" # update to "black-forest-labs/FLUX.1-Redux-dev" once PR is merged | |
base_pipeline_class = FluxPipeline | |
base_repo_id = "black-forest-labs/FLUX.1-schnell" | |
def setUp(self): | |
super().setUp() | |
gc.collect() | |
torch.cuda.empty_cache() | |
def tearDown(self): | |
super().tearDown() | |
gc.collect() | |
torch.cuda.empty_cache() | |
def get_inputs(self, device, seed=0): | |
init_image = load_image( | |
"https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/style_ziggy/img5.png" | |
) | |
return {"image": init_image} | |
def get_base_pipeline_inputs(self, device, seed=0): | |
if str(device).startswith("mps"): | |
generator = torch.manual_seed(seed) | |
else: | |
generator = torch.Generator(device="cpu").manual_seed(seed) | |
return { | |
"num_inference_steps": 2, | |
"guidance_scale": 2.0, | |
"output_type": "np", | |
"generator": generator, | |
} | |
def test_flux_redux_inference(self): | |
pipe_redux = self.pipeline_class.from_pretrained(self.repo_id, torch_dtype=torch.bfloat16) | |
pipe_base = self.base_pipeline_class.from_pretrained( | |
self.base_repo_id, torch_dtype=torch.bfloat16, text_encoder=None, text_encoder_2=None | |
) | |
pipe_redux.to(torch_device) | |
pipe_base.enable_model_cpu_offload() | |
inputs = self.get_inputs(torch_device) | |
base_pipeline_inputs = self.get_base_pipeline_inputs(torch_device) | |
redux_pipeline_output = pipe_redux(**inputs) | |
image = pipe_base(**base_pipeline_inputs, **redux_pipeline_output).images[0] | |
image_slice = image[0, :10, :10] | |
expected_slice = np.array( | |
[ | |
0.30078125, | |
0.37890625, | |
0.46875, | |
0.28125, | |
0.36914062, | |
0.47851562, | |
0.28515625, | |
0.375, | |
0.4765625, | |
0.28125, | |
0.375, | |
0.48046875, | |
0.27929688, | |
0.37695312, | |
0.47851562, | |
0.27734375, | |
0.38085938, | |
0.4765625, | |
0.2734375, | |
0.38085938, | |
0.47265625, | |
0.27539062, | |
0.37890625, | |
0.47265625, | |
0.27734375, | |
0.37695312, | |
0.47070312, | |
0.27929688, | |
0.37890625, | |
0.47460938, | |
], | |
dtype=np.float32, | |
) | |
max_diff = numpy_cosine_similarity_distance(expected_slice.flatten(), image_slice.flatten()) | |
assert max_diff < 1e-4 | |