Spaces:
Running
on
Zero
Running
on
Zero
# Copyright 2024 The HuggingFace Team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import inspect | |
import unittest | |
import numpy as np | |
import torch | |
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer, LlamaConfig, LlamaModel, LlamaTokenizer | |
from diffusers import ( | |
AutoencoderKLHunyuanVideo, | |
FlowMatchEulerDiscreteScheduler, | |
HunyuanVideoPipeline, | |
HunyuanVideoTransformer3DModel, | |
) | |
from diffusers.utils.testing_utils import ( | |
enable_full_determinism, | |
torch_device, | |
) | |
from ..test_pipelines_common import PipelineTesterMixin, PyramidAttentionBroadcastTesterMixin, to_np | |
enable_full_determinism() | |
class HunyuanVideoPipelineFastTests(PipelineTesterMixin, PyramidAttentionBroadcastTesterMixin, unittest.TestCase): | |
pipeline_class = HunyuanVideoPipeline | |
params = frozenset(["prompt", "height", "width", "guidance_scale", "prompt_embeds", "pooled_prompt_embeds"]) | |
batch_params = frozenset(["prompt"]) | |
required_optional_params = frozenset( | |
[ | |
"num_inference_steps", | |
"generator", | |
"latents", | |
"return_dict", | |
"callback_on_step_end", | |
"callback_on_step_end_tensor_inputs", | |
] | |
) | |
# there is no xformers processor for Flux | |
test_xformers_attention = False | |
test_layerwise_casting = True | |
def get_dummy_components(self, num_layers: int = 1, num_single_layers: int = 1): | |
torch.manual_seed(0) | |
transformer = HunyuanVideoTransformer3DModel( | |
in_channels=4, | |
out_channels=4, | |
num_attention_heads=2, | |
attention_head_dim=10, | |
num_layers=num_layers, | |
num_single_layers=num_single_layers, | |
num_refiner_layers=1, | |
patch_size=1, | |
patch_size_t=1, | |
guidance_embeds=True, | |
text_embed_dim=16, | |
pooled_projection_dim=8, | |
rope_axes_dim=(2, 4, 4), | |
) | |
torch.manual_seed(0) | |
vae = AutoencoderKLHunyuanVideo( | |
in_channels=3, | |
out_channels=3, | |
latent_channels=4, | |
down_block_types=( | |
"HunyuanVideoDownBlock3D", | |
"HunyuanVideoDownBlock3D", | |
"HunyuanVideoDownBlock3D", | |
"HunyuanVideoDownBlock3D", | |
), | |
up_block_types=( | |
"HunyuanVideoUpBlock3D", | |
"HunyuanVideoUpBlock3D", | |
"HunyuanVideoUpBlock3D", | |
"HunyuanVideoUpBlock3D", | |
), | |
block_out_channels=(8, 8, 8, 8), | |
layers_per_block=1, | |
act_fn="silu", | |
norm_num_groups=4, | |
scaling_factor=0.476986, | |
spatial_compression_ratio=8, | |
temporal_compression_ratio=4, | |
mid_block_add_attention=True, | |
) | |
torch.manual_seed(0) | |
scheduler = FlowMatchEulerDiscreteScheduler(shift=7.0) | |
llama_text_encoder_config = LlamaConfig( | |
bos_token_id=0, | |
eos_token_id=2, | |
hidden_size=16, | |
intermediate_size=37, | |
layer_norm_eps=1e-05, | |
num_attention_heads=4, | |
num_hidden_layers=2, | |
pad_token_id=1, | |
vocab_size=1000, | |
hidden_act="gelu", | |
projection_dim=32, | |
) | |
clip_text_encoder_config = CLIPTextConfig( | |
bos_token_id=0, | |
eos_token_id=2, | |
hidden_size=8, | |
intermediate_size=37, | |
layer_norm_eps=1e-05, | |
num_attention_heads=4, | |
num_hidden_layers=2, | |
pad_token_id=1, | |
vocab_size=1000, | |
hidden_act="gelu", | |
projection_dim=32, | |
) | |
torch.manual_seed(0) | |
text_encoder = LlamaModel(llama_text_encoder_config) | |
tokenizer = LlamaTokenizer.from_pretrained("finetrainers/dummy-hunyaunvideo", subfolder="tokenizer") | |
torch.manual_seed(0) | |
text_encoder_2 = CLIPTextModel(clip_text_encoder_config) | |
tokenizer_2 = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") | |
components = { | |
"transformer": transformer, | |
"vae": vae, | |
"scheduler": scheduler, | |
"text_encoder": text_encoder, | |
"text_encoder_2": text_encoder_2, | |
"tokenizer": tokenizer, | |
"tokenizer_2": tokenizer_2, | |
} | |
return components | |
def get_dummy_inputs(self, device, seed=0): | |
if str(device).startswith("mps"): | |
generator = torch.manual_seed(seed) | |
else: | |
generator = torch.Generator(device=device).manual_seed(seed) | |
inputs = { | |
"prompt": "dance monkey", | |
"prompt_template": { | |
"template": "{}", | |
"crop_start": 0, | |
}, | |
"generator": generator, | |
"num_inference_steps": 2, | |
"guidance_scale": 4.5, | |
"height": 16, | |
"width": 16, | |
# 4 * k + 1 is the recommendation | |
"num_frames": 9, | |
"max_sequence_length": 16, | |
"output_type": "pt", | |
} | |
return inputs | |
def test_inference(self): | |
device = "cpu" | |
components = self.get_dummy_components() | |
pipe = self.pipeline_class(**components) | |
pipe.to(device) | |
pipe.set_progress_bar_config(disable=None) | |
inputs = self.get_dummy_inputs(device) | |
video = pipe(**inputs).frames | |
generated_video = video[0] | |
self.assertEqual(generated_video.shape, (9, 3, 16, 16)) | |
expected_video = torch.randn(9, 3, 16, 16) | |
max_diff = np.abs(generated_video - expected_video).max() | |
self.assertLessEqual(max_diff, 1e10) | |
def test_callback_inputs(self): | |
sig = inspect.signature(self.pipeline_class.__call__) | |
has_callback_tensor_inputs = "callback_on_step_end_tensor_inputs" in sig.parameters | |
has_callback_step_end = "callback_on_step_end" in sig.parameters | |
if not (has_callback_tensor_inputs and has_callback_step_end): | |
return | |
components = self.get_dummy_components() | |
pipe = self.pipeline_class(**components) | |
pipe = pipe.to(torch_device) | |
pipe.set_progress_bar_config(disable=None) | |
self.assertTrue( | |
hasattr(pipe, "_callback_tensor_inputs"), | |
f" {self.pipeline_class} should have `_callback_tensor_inputs` that defines a list of tensor variables its callback function can use as inputs", | |
) | |
def callback_inputs_subset(pipe, i, t, callback_kwargs): | |
# iterate over callback args | |
for tensor_name, tensor_value in callback_kwargs.items(): | |
# check that we're only passing in allowed tensor inputs | |
assert tensor_name in pipe._callback_tensor_inputs | |
return callback_kwargs | |
def callback_inputs_all(pipe, i, t, callback_kwargs): | |
for tensor_name in pipe._callback_tensor_inputs: | |
assert tensor_name in callback_kwargs | |
# iterate over callback args | |
for tensor_name, tensor_value in callback_kwargs.items(): | |
# check that we're only passing in allowed tensor inputs | |
assert tensor_name in pipe._callback_tensor_inputs | |
return callback_kwargs | |
inputs = self.get_dummy_inputs(torch_device) | |
# Test passing in a subset | |
inputs["callback_on_step_end"] = callback_inputs_subset | |
inputs["callback_on_step_end_tensor_inputs"] = ["latents"] | |
output = pipe(**inputs)[0] | |
# Test passing in a everything | |
inputs["callback_on_step_end"] = callback_inputs_all | |
inputs["callback_on_step_end_tensor_inputs"] = pipe._callback_tensor_inputs | |
output = pipe(**inputs)[0] | |
def callback_inputs_change_tensor(pipe, i, t, callback_kwargs): | |
is_last = i == (pipe.num_timesteps - 1) | |
if is_last: | |
callback_kwargs["latents"] = torch.zeros_like(callback_kwargs["latents"]) | |
return callback_kwargs | |
inputs["callback_on_step_end"] = callback_inputs_change_tensor | |
inputs["callback_on_step_end_tensor_inputs"] = pipe._callback_tensor_inputs | |
output = pipe(**inputs)[0] | |
assert output.abs().sum() < 1e10 | |
def test_attention_slicing_forward_pass( | |
self, test_max_difference=True, test_mean_pixel_difference=True, expected_max_diff=1e-3 | |
): | |
if not self.test_attention_slicing: | |
return | |
components = self.get_dummy_components() | |
pipe = self.pipeline_class(**components) | |
for component in pipe.components.values(): | |
if hasattr(component, "set_default_attn_processor"): | |
component.set_default_attn_processor() | |
pipe.to(torch_device) | |
pipe.set_progress_bar_config(disable=None) | |
generator_device = "cpu" | |
inputs = self.get_dummy_inputs(generator_device) | |
output_without_slicing = pipe(**inputs)[0] | |
pipe.enable_attention_slicing(slice_size=1) | |
inputs = self.get_dummy_inputs(generator_device) | |
output_with_slicing1 = pipe(**inputs)[0] | |
pipe.enable_attention_slicing(slice_size=2) | |
inputs = self.get_dummy_inputs(generator_device) | |
output_with_slicing2 = pipe(**inputs)[0] | |
if test_max_difference: | |
max_diff1 = np.abs(to_np(output_with_slicing1) - to_np(output_without_slicing)).max() | |
max_diff2 = np.abs(to_np(output_with_slicing2) - to_np(output_without_slicing)).max() | |
self.assertLess( | |
max(max_diff1, max_diff2), | |
expected_max_diff, | |
"Attention slicing should not affect the inference results", | |
) | |
def test_vae_tiling(self, expected_diff_max: float = 0.2): | |
# Seems to require higher tolerance than the other tests | |
expected_diff_max = 0.6 | |
generator_device = "cpu" | |
components = self.get_dummy_components() | |
pipe = self.pipeline_class(**components) | |
pipe.to("cpu") | |
pipe.set_progress_bar_config(disable=None) | |
# Without tiling | |
inputs = self.get_dummy_inputs(generator_device) | |
inputs["height"] = inputs["width"] = 128 | |
output_without_tiling = pipe(**inputs)[0] | |
# With tiling | |
pipe.vae.enable_tiling( | |
tile_sample_min_height=96, | |
tile_sample_min_width=96, | |
tile_sample_stride_height=64, | |
tile_sample_stride_width=64, | |
) | |
inputs = self.get_dummy_inputs(generator_device) | |
inputs["height"] = inputs["width"] = 128 | |
output_with_tiling = pipe(**inputs)[0] | |
self.assertLess( | |
(to_np(output_without_tiling) - to_np(output_with_tiling)).max(), | |
expected_diff_max, | |
"VAE tiling should not affect the inference results", | |
) | |
# TODO(aryan): Create a dummy gemma model with smol vocab size | |
def test_inference_batch_consistent(self): | |
pass | |
def test_inference_batch_single_identical(self): | |
pass | |