Spaces:
Running
on
Zero
Running
on
Zero
# coding=utf-8 | |
# Copyright 2024 HuggingFace Inc. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import random | |
import unittest | |
import numpy as np | |
import torch | |
from diffusers import ( | |
AutoencoderKL, | |
EulerDiscreteScheduler, | |
KolorsImg2ImgPipeline, | |
UNet2DConditionModel, | |
) | |
from diffusers.pipelines.kolors import ChatGLMModel, ChatGLMTokenizer | |
from diffusers.utils.testing_utils import ( | |
enable_full_determinism, | |
floats_tensor, | |
) | |
from ..pipeline_params import ( | |
TEXT_TO_IMAGE_BATCH_PARAMS, | |
TEXT_TO_IMAGE_CALLBACK_CFG_PARAMS, | |
TEXT_TO_IMAGE_IMAGE_PARAMS, | |
TEXT_TO_IMAGE_PARAMS, | |
) | |
from ..test_pipelines_common import PipelineTesterMixin | |
enable_full_determinism() | |
class KolorsPipelineImg2ImgFastTests(PipelineTesterMixin, unittest.TestCase): | |
pipeline_class = KolorsImg2ImgPipeline | |
params = TEXT_TO_IMAGE_PARAMS | |
batch_params = TEXT_TO_IMAGE_BATCH_PARAMS | |
image_params = TEXT_TO_IMAGE_IMAGE_PARAMS | |
image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS | |
callback_cfg_params = TEXT_TO_IMAGE_CALLBACK_CFG_PARAMS.union({"add_text_embeds", "add_time_ids"}) | |
supports_dduf = False | |
# Copied from tests.pipelines.kolors.test_kolors.KolorsPipelineFastTests.get_dummy_components | |
def get_dummy_components(self, time_cond_proj_dim=None): | |
torch.manual_seed(0) | |
unet = UNet2DConditionModel( | |
block_out_channels=(2, 4), | |
layers_per_block=2, | |
time_cond_proj_dim=time_cond_proj_dim, | |
sample_size=32, | |
in_channels=4, | |
out_channels=4, | |
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), | |
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), | |
# specific config below | |
attention_head_dim=(2, 4), | |
use_linear_projection=True, | |
addition_embed_type="text_time", | |
addition_time_embed_dim=8, | |
transformer_layers_per_block=(1, 2), | |
projection_class_embeddings_input_dim=56, | |
cross_attention_dim=8, | |
norm_num_groups=1, | |
) | |
scheduler = EulerDiscreteScheduler( | |
beta_start=0.00085, | |
beta_end=0.012, | |
steps_offset=1, | |
beta_schedule="scaled_linear", | |
timestep_spacing="leading", | |
) | |
torch.manual_seed(0) | |
vae = AutoencoderKL( | |
block_out_channels=[32, 64], | |
in_channels=3, | |
out_channels=3, | |
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], | |
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], | |
latent_channels=4, | |
sample_size=128, | |
) | |
torch.manual_seed(0) | |
text_encoder = ChatGLMModel.from_pretrained("hf-internal-testing/tiny-random-chatglm3-6b") | |
tokenizer = ChatGLMTokenizer.from_pretrained("hf-internal-testing/tiny-random-chatglm3-6b") | |
components = { | |
"unet": unet, | |
"scheduler": scheduler, | |
"vae": vae, | |
"text_encoder": text_encoder, | |
"tokenizer": tokenizer, | |
"image_encoder": None, | |
"feature_extractor": None, | |
} | |
return components | |
def get_dummy_inputs(self, device, seed=0): | |
image = floats_tensor((1, 3, 64, 64), rng=random.Random(seed)).to(device) | |
image = image / 2 + 0.5 | |
if str(device).startswith("mps"): | |
generator = torch.manual_seed(seed) | |
else: | |
generator = torch.Generator(device=device).manual_seed(seed) | |
inputs = { | |
"prompt": "A painting of a squirrel eating a burger", | |
"image": image, | |
"generator": generator, | |
"num_inference_steps": 2, | |
"guidance_scale": 5.0, | |
"output_type": "np", | |
"strength": 0.8, | |
} | |
return inputs | |
def test_inference(self): | |
device = "cpu" | |
components = self.get_dummy_components() | |
pipe = self.pipeline_class(**components) | |
pipe.to(device) | |
pipe.set_progress_bar_config(disable=None) | |
inputs = self.get_dummy_inputs(device) | |
image = pipe(**inputs).images | |
image_slice = image[0, -3:, -3:, -1] | |
self.assertEqual(image.shape, (1, 64, 64, 3)) | |
expected_slice = np.array( | |
[0.54823864, 0.43654007, 0.4886489, 0.63072854, 0.53641886, 0.4896852, 0.62123513, 0.5621531, 0.42809626] | |
) | |
max_diff = np.abs(image_slice.flatten() - expected_slice).max() | |
self.assertLessEqual(max_diff, 1e-3) | |
def test_inference_batch_single_identical(self): | |
self._test_inference_batch_single_identical(batch_size=3, expected_max_diff=3e-3) | |
def test_float16_inference(self): | |
super().test_float16_inference(expected_max_diff=7e-2) | |