Spaces:
Running
on
Zero
Running
on
Zero
# Copyright 2024 The HuggingFace Team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import gc | |
import inspect | |
import unittest | |
import numpy as np | |
import torch | |
from transformers import Gemma2Config, Gemma2Model, GemmaTokenizer | |
from diffusers import AutoencoderDC, FlowMatchEulerDiscreteScheduler, SanaPipeline, SanaTransformer2DModel | |
from diffusers.utils.testing_utils import ( | |
enable_full_determinism, | |
require_torch_gpu, | |
slow, | |
torch_device, | |
) | |
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS | |
from ..test_pipelines_common import PipelineTesterMixin, to_np | |
enable_full_determinism() | |
class SanaPipelineFastTests(PipelineTesterMixin, unittest.TestCase): | |
pipeline_class = SanaPipeline | |
params = TEXT_TO_IMAGE_PARAMS - {"cross_attention_kwargs"} | |
batch_params = TEXT_TO_IMAGE_BATCH_PARAMS | |
image_params = TEXT_TO_IMAGE_IMAGE_PARAMS | |
image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS | |
required_optional_params = frozenset( | |
[ | |
"num_inference_steps", | |
"generator", | |
"latents", | |
"return_dict", | |
"callback_on_step_end", | |
"callback_on_step_end_tensor_inputs", | |
] | |
) | |
test_xformers_attention = False | |
test_layerwise_casting = True | |
def get_dummy_components(self): | |
torch.manual_seed(0) | |
transformer = SanaTransformer2DModel( | |
patch_size=1, | |
in_channels=4, | |
out_channels=4, | |
num_layers=1, | |
num_attention_heads=2, | |
attention_head_dim=4, | |
num_cross_attention_heads=2, | |
cross_attention_head_dim=4, | |
cross_attention_dim=8, | |
caption_channels=8, | |
sample_size=32, | |
) | |
torch.manual_seed(0) | |
vae = AutoencoderDC( | |
in_channels=3, | |
latent_channels=4, | |
attention_head_dim=2, | |
encoder_block_types=( | |
"ResBlock", | |
"EfficientViTBlock", | |
), | |
decoder_block_types=( | |
"ResBlock", | |
"EfficientViTBlock", | |
), | |
encoder_block_out_channels=(8, 8), | |
decoder_block_out_channels=(8, 8), | |
encoder_qkv_multiscales=((), (5,)), | |
decoder_qkv_multiscales=((), (5,)), | |
encoder_layers_per_block=(1, 1), | |
decoder_layers_per_block=[1, 1], | |
downsample_block_type="conv", | |
upsample_block_type="interpolate", | |
decoder_norm_types="rms_norm", | |
decoder_act_fns="silu", | |
scaling_factor=0.41407, | |
) | |
torch.manual_seed(0) | |
scheduler = FlowMatchEulerDiscreteScheduler(shift=7.0) | |
torch.manual_seed(0) | |
text_encoder_config = Gemma2Config( | |
head_dim=16, | |
hidden_size=8, | |
initializer_range=0.02, | |
intermediate_size=64, | |
max_position_embeddings=8192, | |
model_type="gemma2", | |
num_attention_heads=2, | |
num_hidden_layers=1, | |
num_key_value_heads=2, | |
vocab_size=8, | |
attn_implementation="eager", | |
) | |
text_encoder = Gemma2Model(text_encoder_config) | |
tokenizer = GemmaTokenizer.from_pretrained("hf-internal-testing/dummy-gemma") | |
components = { | |
"transformer": transformer, | |
"vae": vae, | |
"scheduler": scheduler, | |
"text_encoder": text_encoder, | |
"tokenizer": tokenizer, | |
} | |
return components | |
def get_dummy_inputs(self, device, seed=0): | |
if str(device).startswith("mps"): | |
generator = torch.manual_seed(seed) | |
else: | |
generator = torch.Generator(device=device).manual_seed(seed) | |
inputs = { | |
"prompt": "", | |
"negative_prompt": "", | |
"generator": generator, | |
"num_inference_steps": 2, | |
"guidance_scale": 6.0, | |
"height": 32, | |
"width": 32, | |
"max_sequence_length": 16, | |
"output_type": "pt", | |
"complex_human_instruction": None, | |
} | |
return inputs | |
def test_inference(self): | |
device = "cpu" | |
components = self.get_dummy_components() | |
pipe = self.pipeline_class(**components) | |
pipe.to(device) | |
pipe.set_progress_bar_config(disable=None) | |
inputs = self.get_dummy_inputs(device) | |
image = pipe(**inputs)[0] | |
generated_image = image[0] | |
self.assertEqual(generated_image.shape, (3, 32, 32)) | |
expected_image = torch.randn(3, 32, 32) | |
max_diff = np.abs(generated_image - expected_image).max() | |
self.assertLessEqual(max_diff, 1e10) | |
def test_callback_inputs(self): | |
sig = inspect.signature(self.pipeline_class.__call__) | |
has_callback_tensor_inputs = "callback_on_step_end_tensor_inputs" in sig.parameters | |
has_callback_step_end = "callback_on_step_end" in sig.parameters | |
if not (has_callback_tensor_inputs and has_callback_step_end): | |
return | |
components = self.get_dummy_components() | |
pipe = self.pipeline_class(**components) | |
pipe = pipe.to(torch_device) | |
pipe.set_progress_bar_config(disable=None) | |
self.assertTrue( | |
hasattr(pipe, "_callback_tensor_inputs"), | |
f" {self.pipeline_class} should have `_callback_tensor_inputs` that defines a list of tensor variables its callback function can use as inputs", | |
) | |
def callback_inputs_subset(pipe, i, t, callback_kwargs): | |
# iterate over callback args | |
for tensor_name, tensor_value in callback_kwargs.items(): | |
# check that we're only passing in allowed tensor inputs | |
assert tensor_name in pipe._callback_tensor_inputs | |
return callback_kwargs | |
def callback_inputs_all(pipe, i, t, callback_kwargs): | |
for tensor_name in pipe._callback_tensor_inputs: | |
assert tensor_name in callback_kwargs | |
# iterate over callback args | |
for tensor_name, tensor_value in callback_kwargs.items(): | |
# check that we're only passing in allowed tensor inputs | |
assert tensor_name in pipe._callback_tensor_inputs | |
return callback_kwargs | |
inputs = self.get_dummy_inputs(torch_device) | |
# Test passing in a subset | |
inputs["callback_on_step_end"] = callback_inputs_subset | |
inputs["callback_on_step_end_tensor_inputs"] = ["latents"] | |
output = pipe(**inputs)[0] | |
# Test passing in a everything | |
inputs["callback_on_step_end"] = callback_inputs_all | |
inputs["callback_on_step_end_tensor_inputs"] = pipe._callback_tensor_inputs | |
output = pipe(**inputs)[0] | |
def callback_inputs_change_tensor(pipe, i, t, callback_kwargs): | |
is_last = i == (pipe.num_timesteps - 1) | |
if is_last: | |
callback_kwargs["latents"] = torch.zeros_like(callback_kwargs["latents"]) | |
return callback_kwargs | |
inputs["callback_on_step_end"] = callback_inputs_change_tensor | |
inputs["callback_on_step_end_tensor_inputs"] = pipe._callback_tensor_inputs | |
output = pipe(**inputs)[0] | |
assert output.abs().sum() < 1e10 | |
def test_attention_slicing_forward_pass( | |
self, test_max_difference=True, test_mean_pixel_difference=True, expected_max_diff=1e-3 | |
): | |
if not self.test_attention_slicing: | |
return | |
components = self.get_dummy_components() | |
pipe = self.pipeline_class(**components) | |
for component in pipe.components.values(): | |
if hasattr(component, "set_default_attn_processor"): | |
component.set_default_attn_processor() | |
pipe.to(torch_device) | |
pipe.set_progress_bar_config(disable=None) | |
generator_device = "cpu" | |
inputs = self.get_dummy_inputs(generator_device) | |
output_without_slicing = pipe(**inputs)[0] | |
pipe.enable_attention_slicing(slice_size=1) | |
inputs = self.get_dummy_inputs(generator_device) | |
output_with_slicing1 = pipe(**inputs)[0] | |
pipe.enable_attention_slicing(slice_size=2) | |
inputs = self.get_dummy_inputs(generator_device) | |
output_with_slicing2 = pipe(**inputs)[0] | |
if test_max_difference: | |
max_diff1 = np.abs(to_np(output_with_slicing1) - to_np(output_without_slicing)).max() | |
max_diff2 = np.abs(to_np(output_with_slicing2) - to_np(output_without_slicing)).max() | |
self.assertLess( | |
max(max_diff1, max_diff2), | |
expected_max_diff, | |
"Attention slicing should not affect the inference results", | |
) | |
def test_vae_tiling(self, expected_diff_max: float = 0.2): | |
generator_device = "cpu" | |
components = self.get_dummy_components() | |
pipe = self.pipeline_class(**components) | |
pipe.to("cpu") | |
pipe.set_progress_bar_config(disable=None) | |
# Without tiling | |
inputs = self.get_dummy_inputs(generator_device) | |
inputs["height"] = inputs["width"] = 128 | |
output_without_tiling = pipe(**inputs)[0] | |
# With tiling | |
pipe.vae.enable_tiling( | |
tile_sample_min_height=96, | |
tile_sample_min_width=96, | |
tile_sample_stride_height=64, | |
tile_sample_stride_width=64, | |
) | |
inputs = self.get_dummy_inputs(generator_device) | |
inputs["height"] = inputs["width"] = 128 | |
output_with_tiling = pipe(**inputs)[0] | |
self.assertLess( | |
(to_np(output_without_tiling) - to_np(output_with_tiling)).max(), | |
expected_diff_max, | |
"VAE tiling should not affect the inference results", | |
) | |
# TODO(aryan): Create a dummy gemma model with smol vocab size | |
def test_inference_batch_consistent(self): | |
pass | |
def test_inference_batch_single_identical(self): | |
pass | |
def test_float16_inference(self): | |
# Requires higher tolerance as model seems very sensitive to dtype | |
super().test_float16_inference(expected_max_diff=0.08) | |
class SanaPipelineIntegrationTests(unittest.TestCase): | |
prompt = "A painting of a squirrel eating a burger." | |
def setUp(self): | |
super().setUp() | |
gc.collect() | |
torch.cuda.empty_cache() | |
def tearDown(self): | |
super().tearDown() | |
gc.collect() | |
torch.cuda.empty_cache() | |
def test_sana_1024(self): | |
generator = torch.Generator("cpu").manual_seed(0) | |
pipe = SanaPipeline.from_pretrained( | |
"Efficient-Large-Model/Sana_1600M_1024px_diffusers", torch_dtype=torch.float16 | |
) | |
pipe.enable_model_cpu_offload() | |
image = pipe( | |
prompt=self.prompt, | |
height=1024, | |
width=1024, | |
generator=generator, | |
num_inference_steps=20, | |
output_type="np", | |
).images[0] | |
image = image.flatten() | |
output_slice = np.concatenate((image[:16], image[-16:])) | |
# fmt: off | |
expected_slice = np.array([0.0427, 0.0789, 0.0662, 0.0464, 0.082, 0.0574, 0.0535, 0.0886, 0.0647, 0.0549, 0.0872, 0.0605, 0.0593, 0.0942, 0.0674, 0.0581, 0.0076, 0.0168, 0.0027, 0.0063, 0.0159, 0.0, 0.0071, 0.0198, 0.0034, 0.0105, 0.0212, 0.0, 0.0, 0.0166, 0.0042, 0.0125]) | |
# fmt: on | |
self.assertTrue(np.allclose(output_slice, expected_slice, atol=1e-4)) | |
def test_sana_512(self): | |
generator = torch.Generator("cpu").manual_seed(0) | |
pipe = SanaPipeline.from_pretrained( | |
"Efficient-Large-Model/Sana_1600M_512px_diffusers", torch_dtype=torch.float16 | |
) | |
pipe.enable_model_cpu_offload() | |
image = pipe( | |
prompt=self.prompt, | |
height=512, | |
width=512, | |
generator=generator, | |
num_inference_steps=20, | |
output_type="np", | |
).images[0] | |
image = image.flatten() | |
output_slice = np.concatenate((image[:16], image[-16:])) | |
# fmt: off | |
expected_slice = np.array([0.0803, 0.0774, 0.1108, 0.0872, 0.093, 0.1118, 0.0952, 0.0898, 0.1038, 0.0818, 0.0754, 0.0894, 0.074, 0.0691, 0.0906, 0.0671, 0.0154, 0.0254, 0.0203, 0.0178, 0.0283, 0.0193, 0.0215, 0.0273, 0.0188, 0.0212, 0.0273, 0.0151, 0.0061, 0.0244, 0.0212, 0.0259]) | |
# fmt: on | |
self.assertTrue(np.allclose(output_slice, expected_slice, atol=1e-4)) | |