Spaces:
Running
on
Zero
Running
on
Zero
# coding=utf-8 | |
# Copyright 2024 The HuggingFace Team Inc. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a clone of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import gc | |
import tempfile | |
import unittest | |
import numpy as np | |
import pytest | |
from huggingface_hub import hf_hub_download | |
from diffusers import ( | |
BitsAndBytesConfig, | |
DiffusionPipeline, | |
FluxTransformer2DModel, | |
SanaTransformer2DModel, | |
SD3Transformer2DModel, | |
logging, | |
) | |
from diffusers.utils import is_accelerate_version | |
from diffusers.utils.testing_utils import ( | |
CaptureLogger, | |
is_bitsandbytes_available, | |
is_torch_available, | |
is_transformers_available, | |
load_pt, | |
numpy_cosine_similarity_distance, | |
require_accelerate, | |
require_bitsandbytes_version_greater, | |
require_peft_version_greater, | |
require_torch, | |
require_torch_gpu, | |
require_transformers_version_greater, | |
slow, | |
torch_device, | |
) | |
def get_some_linear_layer(model): | |
if model.__class__.__name__ in ["SD3Transformer2DModel", "FluxTransformer2DModel"]: | |
return model.transformer_blocks[0].attn.to_q | |
else: | |
return NotImplementedError("Don't know what layer to retrieve here.") | |
if is_transformers_available(): | |
from transformers import BitsAndBytesConfig as BnbConfig | |
from transformers import T5EncoderModel | |
if is_torch_available(): | |
import torch | |
import torch.nn as nn | |
class LoRALayer(nn.Module): | |
"""Wraps a linear layer with LoRA-like adapter - Used for testing purposes only | |
Taken from | |
https://github.com/huggingface/transformers/blob/566302686a71de14125717dea9a6a45b24d42b37/tests/quantization/bnb/test_8bit.py#L62C5-L78C77 | |
""" | |
def __init__(self, module: nn.Module, rank: int): | |
super().__init__() | |
self.module = module | |
self.adapter = nn.Sequential( | |
nn.Linear(module.in_features, rank, bias=False), | |
nn.Linear(rank, module.out_features, bias=False), | |
) | |
small_std = (2.0 / (5 * min(module.in_features, module.out_features))) ** 0.5 | |
nn.init.normal_(self.adapter[0].weight, std=small_std) | |
nn.init.zeros_(self.adapter[1].weight) | |
self.adapter.to(module.weight.device) | |
def forward(self, input, *args, **kwargs): | |
return self.module(input, *args, **kwargs) + self.adapter(input) | |
if is_bitsandbytes_available(): | |
import bitsandbytes as bnb | |
class Base8bitTests(unittest.TestCase): | |
# We need to test on relatively large models (aka >1b parameters otherwise the quantiztion may not work as expected) | |
# Therefore here we use only SD3 to test our module | |
model_name = "stabilityai/stable-diffusion-3-medium-diffusers" | |
# This was obtained on audace so the number might slightly change | |
expected_rel_difference = 1.94 | |
prompt = "a beautiful sunset amidst the mountains." | |
num_inference_steps = 10 | |
seed = 0 | |
def get_dummy_inputs(self): | |
prompt_embeds = load_pt( | |
"https://huggingface.co/datasets/hf-internal-testing/bnb-diffusers-testing-artifacts/resolve/main/prompt_embeds.pt" | |
) | |
pooled_prompt_embeds = load_pt( | |
"https://huggingface.co/datasets/hf-internal-testing/bnb-diffusers-testing-artifacts/resolve/main/pooled_prompt_embeds.pt" | |
) | |
latent_model_input = load_pt( | |
"https://huggingface.co/datasets/hf-internal-testing/bnb-diffusers-testing-artifacts/resolve/main/latent_model_input.pt" | |
) | |
input_dict_for_transformer = { | |
"hidden_states": latent_model_input, | |
"encoder_hidden_states": prompt_embeds, | |
"pooled_projections": pooled_prompt_embeds, | |
"timestep": torch.Tensor([1.0]), | |
"return_dict": False, | |
} | |
return input_dict_for_transformer | |
class BnB8bitBasicTests(Base8bitTests): | |
def setUp(self): | |
gc.collect() | |
torch.cuda.empty_cache() | |
# Models | |
self.model_fp16 = SD3Transformer2DModel.from_pretrained( | |
self.model_name, subfolder="transformer", torch_dtype=torch.float16 | |
) | |
mixed_int8_config = BitsAndBytesConfig(load_in_8bit=True) | |
self.model_8bit = SD3Transformer2DModel.from_pretrained( | |
self.model_name, subfolder="transformer", quantization_config=mixed_int8_config | |
) | |
def tearDown(self): | |
del self.model_fp16 | |
del self.model_8bit | |
gc.collect() | |
torch.cuda.empty_cache() | |
def test_quantization_num_parameters(self): | |
r""" | |
Test if the number of returned parameters is correct | |
""" | |
num_params_8bit = self.model_8bit.num_parameters() | |
num_params_fp16 = self.model_fp16.num_parameters() | |
self.assertEqual(num_params_8bit, num_params_fp16) | |
def test_quantization_config_json_serialization(self): | |
r""" | |
A simple test to check if the quantization config is correctly serialized and deserialized | |
""" | |
config = self.model_8bit.config | |
self.assertTrue("quantization_config" in config) | |
_ = config["quantization_config"].to_dict() | |
_ = config["quantization_config"].to_diff_dict() | |
_ = config["quantization_config"].to_json_string() | |
def test_memory_footprint(self): | |
r""" | |
A simple test to check if the model conversion has been done correctly by checking on the | |
memory footprint of the converted model and the class type of the linear layers of the converted models | |
""" | |
mem_fp16 = self.model_fp16.get_memory_footprint() | |
mem_8bit = self.model_8bit.get_memory_footprint() | |
self.assertAlmostEqual(mem_fp16 / mem_8bit, self.expected_rel_difference, delta=1e-2) | |
linear = get_some_linear_layer(self.model_8bit) | |
self.assertTrue(linear.weight.__class__ == bnb.nn.Int8Params) | |
def test_original_dtype(self): | |
r""" | |
A simple test to check if the model succesfully stores the original dtype | |
""" | |
self.assertTrue("_pre_quantization_dtype" in self.model_8bit.config) | |
self.assertFalse("_pre_quantization_dtype" in self.model_fp16.config) | |
self.assertTrue(self.model_8bit.config["_pre_quantization_dtype"] == torch.float16) | |
def test_keep_modules_in_fp32(self): | |
r""" | |
A simple tests to check if the modules under `_keep_in_fp32_modules` are kept in fp32. | |
Also ensures if inference works. | |
""" | |
fp32_modules = SD3Transformer2DModel._keep_in_fp32_modules | |
SD3Transformer2DModel._keep_in_fp32_modules = ["proj_out"] | |
mixed_int8_config = BitsAndBytesConfig(load_in_8bit=True) | |
model = SD3Transformer2DModel.from_pretrained( | |
self.model_name, subfolder="transformer", quantization_config=mixed_int8_config | |
) | |
for name, module in model.named_modules(): | |
if isinstance(module, torch.nn.Linear): | |
if name in model._keep_in_fp32_modules: | |
self.assertTrue(module.weight.dtype == torch.float32) | |
else: | |
# 8-bit parameters are packed in int8 variables | |
self.assertTrue(module.weight.dtype == torch.int8) | |
# test if inference works. | |
with torch.no_grad() and torch.amp.autocast("cuda", dtype=torch.float16): | |
input_dict_for_transformer = self.get_dummy_inputs() | |
model_inputs = { | |
k: v.to(device=torch_device) for k, v in input_dict_for_transformer.items() if not isinstance(v, bool) | |
} | |
model_inputs.update({k: v for k, v in input_dict_for_transformer.items() if k not in model_inputs}) | |
_ = model(**model_inputs) | |
SD3Transformer2DModel._keep_in_fp32_modules = fp32_modules | |
def test_linear_are_8bit(self): | |
r""" | |
A simple test to check if the model conversion has been done correctly by checking on the | |
memory footprint of the converted model and the class type of the linear layers of the converted models | |
""" | |
self.model_fp16.get_memory_footprint() | |
self.model_8bit.get_memory_footprint() | |
for name, module in self.model_8bit.named_modules(): | |
if isinstance(module, torch.nn.Linear): | |
if name not in ["proj_out"]: | |
# 8-bit parameters are packed in int8 variables | |
self.assertTrue(module.weight.dtype == torch.int8) | |
def test_llm_skip(self): | |
r""" | |
A simple test to check if `llm_int8_skip_modules` works as expected | |
""" | |
config = BitsAndBytesConfig(load_in_8bit=True, llm_int8_skip_modules=["proj_out"]) | |
model_8bit = SD3Transformer2DModel.from_pretrained( | |
self.model_name, subfolder="transformer", quantization_config=config | |
) | |
linear = get_some_linear_layer(model_8bit) | |
self.assertTrue(linear.weight.dtype == torch.int8) | |
self.assertTrue(isinstance(linear, bnb.nn.Linear8bitLt)) | |
self.assertTrue(isinstance(model_8bit.proj_out, nn.Linear)) | |
self.assertTrue(model_8bit.proj_out.weight.dtype != torch.int8) | |
def test_config_from_pretrained(self): | |
transformer_8bit = FluxTransformer2DModel.from_pretrained( | |
"hf-internal-testing/flux.1-dev-int8-pkg", subfolder="transformer" | |
) | |
linear = get_some_linear_layer(transformer_8bit) | |
self.assertTrue(linear.weight.__class__ == bnb.nn.Int8Params) | |
self.assertTrue(hasattr(linear.weight, "SCB")) | |
def test_device_and_dtype_assignment(self): | |
r""" | |
Test whether trying to cast (or assigning a device to) a model after converting it in 8-bit will throw an error. | |
Checks also if other models are casted correctly. | |
""" | |
with self.assertRaises(ValueError): | |
# Tries with `str` | |
self.model_8bit.to("cpu") | |
with self.assertRaises(ValueError): | |
# Tries with a `dtype`` | |
self.model_8bit.to(torch.float16) | |
with self.assertRaises(ValueError): | |
# Tries with a `device` | |
self.model_8bit.to(torch.device("cuda:0")) | |
with self.assertRaises(ValueError): | |
# Tries with a `device` | |
self.model_8bit.float() | |
with self.assertRaises(ValueError): | |
# Tries with a `device` | |
self.model_8bit.half() | |
# Test if we did not break anything | |
self.model_fp16 = self.model_fp16.to(dtype=torch.float32, device=torch_device) | |
input_dict_for_transformer = self.get_dummy_inputs() | |
model_inputs = { | |
k: v.to(dtype=torch.float32, device=torch_device) | |
for k, v in input_dict_for_transformer.items() | |
if not isinstance(v, bool) | |
} | |
model_inputs.update({k: v for k, v in input_dict_for_transformer.items() if k not in model_inputs}) | |
with torch.no_grad(): | |
_ = self.model_fp16(**model_inputs) | |
# Check this does not throw an error | |
_ = self.model_fp16.to("cpu") | |
# Check this does not throw an error | |
_ = self.model_fp16.half() | |
# Check this does not throw an error | |
_ = self.model_fp16.float() | |
# Check that this does not throw an error | |
_ = self.model_fp16.cuda() | |
class Bnb8bitDeviceTests(Base8bitTests): | |
def setUp(self) -> None: | |
gc.collect() | |
torch.cuda.empty_cache() | |
mixed_int8_config = BitsAndBytesConfig(load_in_8bit=True) | |
self.model_8bit = SanaTransformer2DModel.from_pretrained( | |
"Efficient-Large-Model/Sana_1600M_4Kpx_BF16_diffusers", | |
subfolder="transformer", | |
quantization_config=mixed_int8_config, | |
) | |
def tearDown(self): | |
del self.model_8bit | |
gc.collect() | |
torch.cuda.empty_cache() | |
def test_buffers_device_assignment(self): | |
for buffer_name, buffer in self.model_8bit.named_buffers(): | |
self.assertEqual( | |
buffer.device.type, | |
torch.device(torch_device).type, | |
f"Expected device {torch_device} for {buffer_name} got {buffer.device}.", | |
) | |
class BnB8bitTrainingTests(Base8bitTests): | |
def setUp(self): | |
gc.collect() | |
torch.cuda.empty_cache() | |
mixed_int8_config = BitsAndBytesConfig(load_in_8bit=True) | |
self.model_8bit = SD3Transformer2DModel.from_pretrained( | |
self.model_name, subfolder="transformer", quantization_config=mixed_int8_config | |
) | |
def test_training(self): | |
# Step 1: freeze all parameters | |
for param in self.model_8bit.parameters(): | |
param.requires_grad = False # freeze the model - train adapters later | |
if param.ndim == 1: | |
# cast the small parameters (e.g. layernorm) to fp32 for stability | |
param.data = param.data.to(torch.float32) | |
# Step 2: add adapters | |
for _, module in self.model_8bit.named_modules(): | |
if "Attention" in repr(type(module)): | |
module.to_k = LoRALayer(module.to_k, rank=4) | |
module.to_q = LoRALayer(module.to_q, rank=4) | |
module.to_v = LoRALayer(module.to_v, rank=4) | |
# Step 3: dummy batch | |
input_dict_for_transformer = self.get_dummy_inputs() | |
model_inputs = { | |
k: v.to(device=torch_device) for k, v in input_dict_for_transformer.items() if not isinstance(v, bool) | |
} | |
model_inputs.update({k: v for k, v in input_dict_for_transformer.items() if k not in model_inputs}) | |
# Step 4: Check if the gradient is not None | |
with torch.amp.autocast("cuda", dtype=torch.float16): | |
out = self.model_8bit(**model_inputs)[0] | |
out.norm().backward() | |
for module in self.model_8bit.modules(): | |
if isinstance(module, LoRALayer): | |
self.assertTrue(module.adapter[1].weight.grad is not None) | |
self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0) | |
class SlowBnb8bitTests(Base8bitTests): | |
def setUp(self) -> None: | |
gc.collect() | |
torch.cuda.empty_cache() | |
mixed_int8_config = BitsAndBytesConfig(load_in_8bit=True) | |
model_8bit = SD3Transformer2DModel.from_pretrained( | |
self.model_name, subfolder="transformer", quantization_config=mixed_int8_config | |
) | |
self.pipeline_8bit = DiffusionPipeline.from_pretrained( | |
self.model_name, transformer=model_8bit, torch_dtype=torch.float16 | |
) | |
self.pipeline_8bit.enable_model_cpu_offload() | |
def tearDown(self): | |
del self.pipeline_8bit | |
gc.collect() | |
torch.cuda.empty_cache() | |
def test_quality(self): | |
output = self.pipeline_8bit( | |
prompt=self.prompt, | |
num_inference_steps=self.num_inference_steps, | |
generator=torch.manual_seed(self.seed), | |
output_type="np", | |
).images | |
out_slice = output[0, -3:, -3:, -1].flatten() | |
expected_slice = np.array([0.0674, 0.0623, 0.0364, 0.0632, 0.0671, 0.0430, 0.0317, 0.0493, 0.0583]) | |
max_diff = numpy_cosine_similarity_distance(expected_slice, out_slice) | |
self.assertTrue(max_diff < 1e-2) | |
def test_model_cpu_offload_raises_warning(self): | |
model_8bit = SD3Transformer2DModel.from_pretrained( | |
self.model_name, subfolder="transformer", quantization_config=BitsAndBytesConfig(load_in_8bit=True) | |
) | |
pipeline_8bit = DiffusionPipeline.from_pretrained( | |
self.model_name, transformer=model_8bit, torch_dtype=torch.float16 | |
) | |
logger = logging.get_logger("diffusers.pipelines.pipeline_utils") | |
logger.setLevel(30) | |
with CaptureLogger(logger) as cap_logger: | |
pipeline_8bit.enable_model_cpu_offload() | |
assert "has been loaded in `bitsandbytes` 8bit" in cap_logger.out | |
def test_moving_to_cpu_throws_warning(self): | |
model_8bit = SD3Transformer2DModel.from_pretrained( | |
self.model_name, subfolder="transformer", quantization_config=BitsAndBytesConfig(load_in_8bit=True) | |
) | |
logger = logging.get_logger("diffusers.pipelines.pipeline_utils") | |
logger.setLevel(30) | |
with CaptureLogger(logger) as cap_logger: | |
# Because `model.dtype` will return torch.float16 as SD3 transformer has | |
# a conv layer as the first layer. | |
_ = DiffusionPipeline.from_pretrained( | |
self.model_name, transformer=model_8bit, torch_dtype=torch.float16 | |
).to("cpu") | |
assert "Pipelines loaded with `dtype=torch.float16`" in cap_logger.out | |
def test_generate_quality_dequantize(self): | |
r""" | |
Test that loading the model and unquantize it produce correct results. | |
""" | |
self.pipeline_8bit.transformer.dequantize() | |
output = self.pipeline_8bit( | |
prompt=self.prompt, | |
num_inference_steps=self.num_inference_steps, | |
generator=torch.manual_seed(self.seed), | |
output_type="np", | |
).images | |
out_slice = output[0, -3:, -3:, -1].flatten() | |
expected_slice = np.array([0.0266, 0.0264, 0.0271, 0.0110, 0.0310, 0.0098, 0.0078, 0.0256, 0.0208]) | |
max_diff = numpy_cosine_similarity_distance(expected_slice, out_slice) | |
self.assertTrue(max_diff < 1e-2) | |
# 8bit models cannot be offloaded to CPU. | |
self.assertTrue(self.pipeline_8bit.transformer.device.type == "cuda") | |
# calling it again shouldn't be a problem | |
_ = self.pipeline_8bit( | |
prompt=self.prompt, | |
num_inference_steps=2, | |
generator=torch.manual_seed(self.seed), | |
output_type="np", | |
).images | |
def test_pipeline_cuda_placement_works_with_mixed_int8(self): | |
transformer_8bit_config = BitsAndBytesConfig(load_in_8bit=True) | |
transformer_8bit = SD3Transformer2DModel.from_pretrained( | |
self.model_name, | |
subfolder="transformer", | |
quantization_config=transformer_8bit_config, | |
torch_dtype=torch.float16, | |
) | |
text_encoder_3_8bit_config = BnbConfig(load_in_8bit=True) | |
text_encoder_3_8bit = T5EncoderModel.from_pretrained( | |
self.model_name, | |
subfolder="text_encoder_3", | |
quantization_config=text_encoder_3_8bit_config, | |
torch_dtype=torch.float16, | |
) | |
# CUDA device placement works. | |
pipeline_8bit = DiffusionPipeline.from_pretrained( | |
self.model_name, | |
transformer=transformer_8bit, | |
text_encoder_3=text_encoder_3_8bit, | |
torch_dtype=torch.float16, | |
).to("cuda") | |
# Check if inference works. | |
_ = pipeline_8bit("table", max_sequence_length=20, num_inference_steps=2) | |
del pipeline_8bit | |
class SlowBnb8bitFluxTests(Base8bitTests): | |
def setUp(self) -> None: | |
gc.collect() | |
torch.cuda.empty_cache() | |
model_id = "hf-internal-testing/flux.1-dev-int8-pkg" | |
t5_8bit = T5EncoderModel.from_pretrained(model_id, subfolder="text_encoder_2") | |
transformer_8bit = FluxTransformer2DModel.from_pretrained(model_id, subfolder="transformer") | |
self.pipeline_8bit = DiffusionPipeline.from_pretrained( | |
"black-forest-labs/FLUX.1-dev", | |
text_encoder_2=t5_8bit, | |
transformer=transformer_8bit, | |
torch_dtype=torch.float16, | |
) | |
self.pipeline_8bit.enable_model_cpu_offload() | |
def tearDown(self): | |
del self.pipeline_8bit | |
gc.collect() | |
torch.cuda.empty_cache() | |
def test_quality(self): | |
# keep the resolution and max tokens to a lower number for faster execution. | |
output = self.pipeline_8bit( | |
prompt=self.prompt, | |
num_inference_steps=self.num_inference_steps, | |
generator=torch.manual_seed(self.seed), | |
height=256, | |
width=256, | |
max_sequence_length=64, | |
output_type="np", | |
).images | |
out_slice = output[0, -3:, -3:, -1].flatten() | |
expected_slice = np.array([0.0574, 0.0554, 0.0581, 0.0686, 0.0676, 0.0759, 0.0757, 0.0803, 0.0930]) | |
max_diff = numpy_cosine_similarity_distance(expected_slice, out_slice) | |
self.assertTrue(max_diff < 1e-3) | |
def test_lora_loading(self): | |
self.pipeline_8bit.load_lora_weights( | |
hf_hub_download("ByteDance/Hyper-SD", "Hyper-FLUX.1-dev-8steps-lora.safetensors"), adapter_name="hyper-sd" | |
) | |
self.pipeline_8bit.set_adapters("hyper-sd", adapter_weights=0.125) | |
output = self.pipeline_8bit( | |
prompt=self.prompt, | |
height=256, | |
width=256, | |
max_sequence_length=64, | |
output_type="np", | |
num_inference_steps=8, | |
generator=torch.manual_seed(42), | |
).images | |
out_slice = output[0, -3:, -3:, -1].flatten() | |
expected_slice = np.array([0.3916, 0.3916, 0.3887, 0.4243, 0.4155, 0.4233, 0.4570, 0.4531, 0.4248]) | |
max_diff = numpy_cosine_similarity_distance(expected_slice, out_slice) | |
self.assertTrue(max_diff < 1e-3) | |
class BaseBnb8bitSerializationTests(Base8bitTests): | |
def setUp(self): | |
gc.collect() | |
torch.cuda.empty_cache() | |
quantization_config = BitsAndBytesConfig( | |
load_in_8bit=True, | |
) | |
self.model_0 = SD3Transformer2DModel.from_pretrained( | |
self.model_name, subfolder="transformer", quantization_config=quantization_config | |
) | |
def tearDown(self): | |
del self.model_0 | |
gc.collect() | |
torch.cuda.empty_cache() | |
def test_serialization(self): | |
r""" | |
Test whether it is possible to serialize a model in 8-bit. Uses most typical params as default. | |
""" | |
self.assertTrue("_pre_quantization_dtype" in self.model_0.config) | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
self.model_0.save_pretrained(tmpdirname) | |
config = SD3Transformer2DModel.load_config(tmpdirname) | |
self.assertTrue("quantization_config" in config) | |
self.assertTrue("_pre_quantization_dtype" not in config) | |
model_1 = SD3Transformer2DModel.from_pretrained(tmpdirname) | |
# checking quantized linear module weight | |
linear = get_some_linear_layer(model_1) | |
self.assertTrue(linear.weight.__class__ == bnb.nn.Int8Params) | |
self.assertTrue(hasattr(linear.weight, "SCB")) | |
# checking memory footpring | |
self.assertAlmostEqual(self.model_0.get_memory_footprint() / model_1.get_memory_footprint(), 1, places=2) | |
# Matching all parameters and their quant_state items: | |
d0 = dict(self.model_0.named_parameters()) | |
d1 = dict(model_1.named_parameters()) | |
self.assertTrue(d0.keys() == d1.keys()) | |
# comparing forward() outputs | |
dummy_inputs = self.get_dummy_inputs() | |
inputs = {k: v.to(torch_device) for k, v in dummy_inputs.items() if isinstance(v, torch.Tensor)} | |
inputs.update({k: v for k, v in dummy_inputs.items() if k not in inputs}) | |
out_0 = self.model_0(**inputs)[0] | |
out_1 = model_1(**inputs)[0] | |
self.assertTrue(torch.equal(out_0, out_1)) | |
def test_serialization_sharded(self): | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
self.model_0.save_pretrained(tmpdirname, max_shard_size="200MB") | |
config = SD3Transformer2DModel.load_config(tmpdirname) | |
self.assertTrue("quantization_config" in config) | |
self.assertTrue("_pre_quantization_dtype" not in config) | |
model_1 = SD3Transformer2DModel.from_pretrained(tmpdirname) | |
# checking quantized linear module weight | |
linear = get_some_linear_layer(model_1) | |
self.assertTrue(linear.weight.__class__ == bnb.nn.Int8Params) | |
self.assertTrue(hasattr(linear.weight, "SCB")) | |
# comparing forward() outputs | |
dummy_inputs = self.get_dummy_inputs() | |
inputs = {k: v.to(torch_device) for k, v in dummy_inputs.items() if isinstance(v, torch.Tensor)} | |
inputs.update({k: v for k, v in dummy_inputs.items() if k not in inputs}) | |
out_0 = self.model_0(**inputs)[0] | |
out_1 = model_1(**inputs)[0] | |
self.assertTrue(torch.equal(out_0, out_1)) | |