Spaces:
Running
on
Zero
Running
on
Zero
# coding=utf-8 | |
# Copyright 2024 HuggingFace Inc. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import gc | |
import unittest | |
import torch | |
from diffusers import ( | |
AutoencoderKL, | |
) | |
from diffusers.utils.testing_utils import ( | |
backend_empty_cache, | |
enable_full_determinism, | |
load_hf_numpy, | |
numpy_cosine_similarity_distance, | |
require_torch_accelerator, | |
slow, | |
torch_device, | |
) | |
enable_full_determinism() | |
class AutoencoderKLSingleFileTests(unittest.TestCase): | |
model_class = AutoencoderKL | |
ckpt_path = ( | |
"https://huggingface.co/stabilityai/sd-vae-ft-mse-original/blob/main/vae-ft-mse-840000-ema-pruned.safetensors" | |
) | |
repo_id = "stabilityai/sd-vae-ft-mse" | |
main_input_name = "sample" | |
base_precision = 1e-2 | |
def setUp(self): | |
super().setUp() | |
gc.collect() | |
backend_empty_cache(torch_device) | |
def tearDown(self): | |
super().tearDown() | |
gc.collect() | |
backend_empty_cache(torch_device) | |
def get_file_format(self, seed, shape): | |
return f"gaussian_noise_s={seed}_shape={'_'.join([str(s) for s in shape])}.npy" | |
def get_sd_image(self, seed=0, shape=(4, 3, 512, 512), fp16=False): | |
dtype = torch.float16 if fp16 else torch.float32 | |
image = torch.from_numpy(load_hf_numpy(self.get_file_format(seed, shape))).to(torch_device).to(dtype) | |
return image | |
def test_single_file_inference_same_as_pretrained(self): | |
model_1 = self.model_class.from_pretrained(self.repo_id).to(torch_device) | |
model_2 = self.model_class.from_single_file(self.ckpt_path, config=self.repo_id).to(torch_device) | |
image = self.get_sd_image(33) | |
generator = torch.Generator(torch_device) | |
with torch.no_grad(): | |
sample_1 = model_1(image, generator=generator.manual_seed(0)).sample | |
sample_2 = model_2(image, generator=generator.manual_seed(0)).sample | |
assert sample_1.shape == sample_2.shape | |
output_slice_1 = sample_1.flatten().float().cpu() | |
output_slice_2 = sample_2.flatten().float().cpu() | |
assert numpy_cosine_similarity_distance(output_slice_1, output_slice_2) < 1e-4 | |
def test_single_file_components(self): | |
model = self.model_class.from_pretrained(self.repo_id) | |
model_single_file = self.model_class.from_single_file(self.ckpt_path, config=self.repo_id) | |
PARAMS_TO_IGNORE = ["torch_dtype", "_name_or_path", "_use_default_values", "_diffusers_version"] | |
for param_name, param_value in model_single_file.config.items(): | |
if param_name in PARAMS_TO_IGNORE: | |
continue | |
assert ( | |
model.config[param_name] == param_value | |
), f"{param_name} differs between pretrained loading and single file loading" | |
def test_single_file_arguments(self): | |
model_default = self.model_class.from_single_file(self.ckpt_path, config=self.repo_id) | |
assert model_default.config.scaling_factor == 0.18215 | |
assert model_default.config.sample_size == 256 | |
assert model_default.dtype == torch.float32 | |
scaling_factor = 2.0 | |
sample_size = 512 | |
torch_dtype = torch.float16 | |
model = self.model_class.from_single_file( | |
self.ckpt_path, | |
config=self.repo_id, | |
sample_size=sample_size, | |
scaling_factor=scaling_factor, | |
torch_dtype=torch_dtype, | |
) | |
assert model.config.scaling_factor == scaling_factor | |
assert model.config.sample_size == sample_size | |
assert model.dtype == torch_dtype | |