# AutoencoderKLCogVideoX The 3D variational autoencoder (VAE) model with KL loss used in [CogVideoX](https://github.com/THUDM/CogVideo) was introduced in [CogVideoX: Text-to-Video Diffusion Models with An Expert Transformer](https://github.com/THUDM/CogVideo/blob/main/resources/CogVideoX.pdf) by Tsinghua University & ZhipuAI. The model can be loaded with the following code snippet. ```python from diffusers import AutoencoderKLCogVideoX vae = AutoencoderKLCogVideoX.from_pretrained("THUDM/CogVideoX-2b", subfolder="vae", torch_dtype=torch.float16).to("cuda") ``` ## AutoencoderKLCogVideoX [[autodoc]] AutoencoderKLCogVideoX - decode - encode - all ## AutoencoderKLOutput [[autodoc]] models.autoencoders.autoencoder_kl.AutoencoderKLOutput ## DecoderOutput [[autodoc]] models.autoencoders.vae.DecoderOutput