from typing import Any, Dict, Optional import torch from torch import nn from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.models import PixArtTransformer2DModel from diffusers.models.attention import BasicTransformerBlock from diffusers.models.modeling_outputs import Transformer2DModelOutput from diffusers.models.modeling_utils import ModelMixin class PixArtControlNetAdapterBlock(nn.Module): def __init__( self, block_index, # taken from PixArtTransformer2DModel num_attention_heads: int = 16, attention_head_dim: int = 72, dropout: float = 0.0, cross_attention_dim: Optional[int] = 1152, attention_bias: bool = True, activation_fn: str = "gelu-approximate", num_embeds_ada_norm: Optional[int] = 1000, upcast_attention: bool = False, norm_type: str = "ada_norm_single", norm_elementwise_affine: bool = False, norm_eps: float = 1e-6, attention_type: Optional[str] = "default", ): super().__init__() self.block_index = block_index self.inner_dim = num_attention_heads * attention_head_dim # the first block has a zero before layer if self.block_index == 0: self.before_proj = nn.Linear(self.inner_dim, self.inner_dim) nn.init.zeros_(self.before_proj.weight) nn.init.zeros_(self.before_proj.bias) self.transformer_block = BasicTransformerBlock( self.inner_dim, num_attention_heads, attention_head_dim, dropout=dropout, cross_attention_dim=cross_attention_dim, activation_fn=activation_fn, num_embeds_ada_norm=num_embeds_ada_norm, attention_bias=attention_bias, upcast_attention=upcast_attention, norm_type=norm_type, norm_elementwise_affine=norm_elementwise_affine, norm_eps=norm_eps, attention_type=attention_type, ) self.after_proj = nn.Linear(self.inner_dim, self.inner_dim) nn.init.zeros_(self.after_proj.weight) nn.init.zeros_(self.after_proj.bias) def train(self, mode: bool = True): self.transformer_block.train(mode) if self.block_index == 0: self.before_proj.train(mode) self.after_proj.train(mode) def forward( self, hidden_states: torch.Tensor, controlnet_states: torch.Tensor, encoder_hidden_states: Optional[torch.Tensor] = None, timestep: Optional[torch.LongTensor] = None, added_cond_kwargs: Dict[str, torch.Tensor] = None, cross_attention_kwargs: Dict[str, Any] = None, attention_mask: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, ): if self.block_index == 0: controlnet_states = self.before_proj(controlnet_states) controlnet_states = hidden_states + controlnet_states controlnet_states_down = self.transformer_block( hidden_states=controlnet_states, encoder_hidden_states=encoder_hidden_states, timestep=timestep, added_cond_kwargs=added_cond_kwargs, cross_attention_kwargs=cross_attention_kwargs, attention_mask=attention_mask, encoder_attention_mask=encoder_attention_mask, class_labels=None, ) controlnet_states_left = self.after_proj(controlnet_states_down) return controlnet_states_left, controlnet_states_down class PixArtControlNetAdapterModel(ModelMixin, ConfigMixin): # N=13, as specified in the paper https://arxiv.org/html/2401.05252v1/#S4 ControlNet-Transformer @register_to_config def __init__(self, num_layers=13) -> None: super().__init__() self.num_layers = num_layers self.controlnet_blocks = nn.ModuleList( [PixArtControlNetAdapterBlock(block_index=i) for i in range(num_layers)] ) @classmethod def from_transformer(cls, transformer: PixArtTransformer2DModel): control_net = PixArtControlNetAdapterModel() # copied the specified number of blocks from the transformer for depth in range(control_net.num_layers): control_net.controlnet_blocks[depth].transformer_block.load_state_dict( transformer.transformer_blocks[depth].state_dict() ) return control_net def train(self, mode: bool = True): for block in self.controlnet_blocks: block.train(mode) class PixArtControlNetTransformerModel(ModelMixin, ConfigMixin): def __init__( self, transformer: PixArtTransformer2DModel, controlnet: PixArtControlNetAdapterModel, blocks_num=13, init_from_transformer=False, training=False, ): super().__init__() self.blocks_num = blocks_num self.gradient_checkpointing = False self.register_to_config(**transformer.config) self.training = training if init_from_transformer: # copies the specified number of blocks from the transformer controlnet.from_transformer(transformer, self.blocks_num) self.transformer = transformer self.controlnet = controlnet def forward( self, hidden_states: torch.Tensor, encoder_hidden_states: Optional[torch.Tensor] = None, timestep: Optional[torch.LongTensor] = None, controlnet_cond: Optional[torch.Tensor] = None, added_cond_kwargs: Dict[str, torch.Tensor] = None, cross_attention_kwargs: Dict[str, Any] = None, attention_mask: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, return_dict: bool = True, ): if self.transformer.use_additional_conditions and added_cond_kwargs is None: raise ValueError("`added_cond_kwargs` cannot be None when using additional conditions for `adaln_single`.") # ensure attention_mask is a bias, and give it a singleton query_tokens dimension. # we may have done this conversion already, e.g. if we came here via UNet2DConditionModel#forward. # we can tell by counting dims; if ndim == 2: it's a mask rather than a bias. # expects mask of shape: # [batch, key_tokens] # adds singleton query_tokens dimension: # [batch, 1, key_tokens] # this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes: # [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn) # [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn) if attention_mask is not None and attention_mask.ndim == 2: # assume that mask is expressed as: # (1 = keep, 0 = discard) # convert mask into a bias that can be added to attention scores: # (keep = +0, discard = -10000.0) attention_mask = (1 - attention_mask.to(hidden_states.dtype)) * -10000.0 attention_mask = attention_mask.unsqueeze(1) # convert encoder_attention_mask to a bias the same way we do for attention_mask if encoder_attention_mask is not None and encoder_attention_mask.ndim == 2: encoder_attention_mask = (1 - encoder_attention_mask.to(hidden_states.dtype)) * -10000.0 encoder_attention_mask = encoder_attention_mask.unsqueeze(1) # 1. Input batch_size = hidden_states.shape[0] height, width = ( hidden_states.shape[-2] // self.transformer.config.patch_size, hidden_states.shape[-1] // self.transformer.config.patch_size, ) hidden_states = self.transformer.pos_embed(hidden_states) timestep, embedded_timestep = self.transformer.adaln_single( timestep, added_cond_kwargs, batch_size=batch_size, hidden_dtype=hidden_states.dtype ) if self.transformer.caption_projection is not None: encoder_hidden_states = self.transformer.caption_projection(encoder_hidden_states) encoder_hidden_states = encoder_hidden_states.view(batch_size, -1, hidden_states.shape[-1]) controlnet_states_down = None if controlnet_cond is not None: controlnet_states_down = self.transformer.pos_embed(controlnet_cond) # 2. Blocks for block_index, block in enumerate(self.transformer.transformer_blocks): if torch.is_grad_enabled() and self.gradient_checkpointing: # rc todo: for training and gradient checkpointing print("Gradient checkpointing is not supported for the controlnet transformer model, yet.") exit(1) hidden_states = self._gradient_checkpointing_func( block, hidden_states, attention_mask, encoder_hidden_states, encoder_attention_mask, timestep, cross_attention_kwargs, None, ) else: # the control nets are only used for the blocks 1 to self.blocks_num if block_index > 0 and block_index <= self.blocks_num and controlnet_states_down is not None: controlnet_states_left, controlnet_states_down = self.controlnet.controlnet_blocks[ block_index - 1 ]( hidden_states=hidden_states, # used only in the first block controlnet_states=controlnet_states_down, encoder_hidden_states=encoder_hidden_states, timestep=timestep, added_cond_kwargs=added_cond_kwargs, cross_attention_kwargs=cross_attention_kwargs, attention_mask=attention_mask, encoder_attention_mask=encoder_attention_mask, ) hidden_states = hidden_states + controlnet_states_left hidden_states = block( hidden_states, attention_mask=attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, timestep=timestep, cross_attention_kwargs=cross_attention_kwargs, class_labels=None, ) # 3. Output shift, scale = ( self.transformer.scale_shift_table[None] + embedded_timestep[:, None].to(self.transformer.scale_shift_table.device) ).chunk(2, dim=1) hidden_states = self.transformer.norm_out(hidden_states) # Modulation hidden_states = hidden_states * (1 + scale.to(hidden_states.device)) + shift.to(hidden_states.device) hidden_states = self.transformer.proj_out(hidden_states) hidden_states = hidden_states.squeeze(1) # unpatchify hidden_states = hidden_states.reshape( shape=( -1, height, width, self.transformer.config.patch_size, self.transformer.config.patch_size, self.transformer.out_channels, ) ) hidden_states = torch.einsum("nhwpqc->nchpwq", hidden_states) output = hidden_states.reshape( shape=( -1, self.transformer.out_channels, height * self.transformer.config.patch_size, width * self.transformer.config.patch_size, ) ) if not return_dict: return (output,) return Transformer2DModelOutput(sample=output)