# Copyright 2024 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import gc import sys import unittest import numpy as np import pytest import torch from transformers import CLIPTextModel, CLIPTokenizer, LlamaModel, LlamaTokenizerFast from diffusers import ( AutoencoderKLHunyuanVideo, FlowMatchEulerDiscreteScheduler, HunyuanVideoPipeline, HunyuanVideoTransformer3DModel, ) from diffusers.utils.testing_utils import ( floats_tensor, nightly, numpy_cosine_similarity_distance, require_big_gpu_with_torch_cuda, require_peft_backend, require_torch_gpu, skip_mps, ) sys.path.append(".") from utils import PeftLoraLoaderMixinTests # noqa: E402 @require_peft_backend @skip_mps class HunyuanVideoLoRATests(unittest.TestCase, PeftLoraLoaderMixinTests): pipeline_class = HunyuanVideoPipeline scheduler_cls = FlowMatchEulerDiscreteScheduler scheduler_classes = [FlowMatchEulerDiscreteScheduler] scheduler_kwargs = {} transformer_kwargs = { "in_channels": 4, "out_channels": 4, "num_attention_heads": 2, "attention_head_dim": 10, "num_layers": 1, "num_single_layers": 1, "num_refiner_layers": 1, "patch_size": 1, "patch_size_t": 1, "guidance_embeds": True, "text_embed_dim": 16, "pooled_projection_dim": 8, "rope_axes_dim": (2, 4, 4), } transformer_cls = HunyuanVideoTransformer3DModel vae_kwargs = { "in_channels": 3, "out_channels": 3, "latent_channels": 4, "down_block_types": ( "HunyuanVideoDownBlock3D", "HunyuanVideoDownBlock3D", "HunyuanVideoDownBlock3D", "HunyuanVideoDownBlock3D", ), "up_block_types": ( "HunyuanVideoUpBlock3D", "HunyuanVideoUpBlock3D", "HunyuanVideoUpBlock3D", "HunyuanVideoUpBlock3D", ), "block_out_channels": (8, 8, 8, 8), "layers_per_block": 1, "act_fn": "silu", "norm_num_groups": 4, "scaling_factor": 0.476986, "spatial_compression_ratio": 8, "temporal_compression_ratio": 4, "mid_block_add_attention": True, } vae_cls = AutoencoderKLHunyuanVideo has_two_text_encoders = True tokenizer_cls, tokenizer_id, tokenizer_subfolder = ( LlamaTokenizerFast, "hf-internal-testing/tiny-random-hunyuanvideo", "tokenizer", ) tokenizer_2_cls, tokenizer_2_id, tokenizer_2_subfolder = ( CLIPTokenizer, "hf-internal-testing/tiny-random-hunyuanvideo", "tokenizer_2", ) text_encoder_cls, text_encoder_id, text_encoder_subfolder = ( LlamaModel, "hf-internal-testing/tiny-random-hunyuanvideo", "text_encoder", ) text_encoder_2_cls, text_encoder_2_id, text_encoder_2_subfolder = ( CLIPTextModel, "hf-internal-testing/tiny-random-hunyuanvideo", "text_encoder_2", ) @property def output_shape(self): return (1, 9, 32, 32, 3) def get_dummy_inputs(self, with_generator=True): batch_size = 1 sequence_length = 16 num_channels = 4 num_frames = 9 num_latent_frames = 3 # (num_frames - 1) // temporal_compression_ratio + 1 sizes = (4, 4) generator = torch.manual_seed(0) noise = floats_tensor((batch_size, num_latent_frames, num_channels) + sizes) input_ids = torch.randint(1, sequence_length, size=(batch_size, sequence_length), generator=generator) pipeline_inputs = { "prompt": "", "num_frames": num_frames, "num_inference_steps": 1, "guidance_scale": 6.0, "height": 32, "width": 32, "max_sequence_length": sequence_length, "prompt_template": {"template": "{}", "crop_start": 0}, "output_type": "np", } if with_generator: pipeline_inputs.update({"generator": generator}) return noise, input_ids, pipeline_inputs def test_simple_inference_with_text_lora_denoiser_fused_multi(self): super().test_simple_inference_with_text_lora_denoiser_fused_multi(expected_atol=9e-3) def test_simple_inference_with_text_denoiser_lora_unfused(self): super().test_simple_inference_with_text_denoiser_lora_unfused(expected_atol=9e-3) # TODO(aryan): Fix the following test @unittest.skip("This test fails with an error I haven't been able to debug yet.") def test_simple_inference_save_pretrained(self): pass @unittest.skip("Not supported in HunyuanVideo.") def test_simple_inference_with_text_denoiser_block_scale(self): pass @unittest.skip("Not supported in HunyuanVideo.") def test_simple_inference_with_text_denoiser_block_scale_for_all_dict_options(self): pass @unittest.skip("Not supported in HunyuanVideo.") def test_modify_padding_mode(self): pass @unittest.skip("Text encoder LoRA is not supported in HunyuanVideo.") def test_simple_inference_with_partial_text_lora(self): pass @unittest.skip("Text encoder LoRA is not supported in HunyuanVideo.") def test_simple_inference_with_text_lora(self): pass @unittest.skip("Text encoder LoRA is not supported in HunyuanVideo.") def test_simple_inference_with_text_lora_and_scale(self): pass @unittest.skip("Text encoder LoRA is not supported in HunyuanVideo.") def test_simple_inference_with_text_lora_fused(self): pass @unittest.skip("Text encoder LoRA is not supported in HunyuanVideo.") def test_simple_inference_with_text_lora_save_load(self): pass @nightly @require_torch_gpu @require_peft_backend @require_big_gpu_with_torch_cuda @pytest.mark.big_gpu_with_torch_cuda class HunyuanVideoLoRAIntegrationTests(unittest.TestCase): """internal note: The integration slices were obtained on DGX. torch: 2.5.1+cu124 with CUDA 12.5. Need the same setup for the assertions to pass. """ num_inference_steps = 10 seed = 0 def setUp(self): super().setUp() gc.collect() torch.cuda.empty_cache() model_id = "hunyuanvideo-community/HunyuanVideo" transformer = HunyuanVideoTransformer3DModel.from_pretrained( model_id, subfolder="transformer", torch_dtype=torch.bfloat16 ) self.pipeline = HunyuanVideoPipeline.from_pretrained( model_id, transformer=transformer, torch_dtype=torch.float16 ).to("cuda") def tearDown(self): super().tearDown() gc.collect() torch.cuda.empty_cache() def test_original_format_cseti(self): self.pipeline.load_lora_weights( "Cseti/HunyuanVideo-LoRA-Arcane_Jinx-v1", weight_name="csetiarcane-nfjinx-v1-6000.safetensors" ) self.pipeline.fuse_lora() self.pipeline.unload_lora_weights() self.pipeline.vae.enable_tiling() prompt = "CSETIARCANE. A cat walks on the grass, realistic" out = self.pipeline( prompt=prompt, height=320, width=512, num_frames=9, num_inference_steps=self.num_inference_steps, output_type="np", generator=torch.manual_seed(self.seed), ).frames[0] out = out.flatten() out_slice = np.concatenate((out[:8], out[-8:])) # fmt: off expected_slice = np.array([0.1013, 0.1924, 0.0078, 0.1021, 0.1929, 0.0078, 0.1023, 0.1919, 0.7402, 0.104, 0.4482, 0.7354, 0.0925, 0.4382, 0.7275, 0.0815]) # fmt: on max_diff = numpy_cosine_similarity_distance(expected_slice.flatten(), out_slice) assert max_diff < 1e-3