# coding=utf-8 # Copyright 2024 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys import unittest import torch from transformers import Gemma2Model, GemmaTokenizer from diffusers import AutoencoderDC, FlowMatchEulerDiscreteScheduler, SanaPipeline, SanaTransformer2DModel from diffusers.utils.testing_utils import floats_tensor, require_peft_backend sys.path.append(".") from utils import PeftLoraLoaderMixinTests # noqa: E402 @require_peft_backend class SanaLoRATests(unittest.TestCase, PeftLoraLoaderMixinTests): pipeline_class = SanaPipeline scheduler_cls = FlowMatchEulerDiscreteScheduler(shift=7.0) scheduler_kwargs = {} scheduler_classes = [FlowMatchEulerDiscreteScheduler] transformer_kwargs = { "patch_size": 1, "in_channels": 4, "out_channels": 4, "num_layers": 1, "num_attention_heads": 2, "attention_head_dim": 4, "num_cross_attention_heads": 2, "cross_attention_head_dim": 4, "cross_attention_dim": 8, "caption_channels": 8, "sample_size": 32, } transformer_cls = SanaTransformer2DModel vae_kwargs = { "in_channels": 3, "latent_channels": 4, "attention_head_dim": 2, "encoder_block_types": ( "ResBlock", "EfficientViTBlock", ), "decoder_block_types": ( "ResBlock", "EfficientViTBlock", ), "encoder_block_out_channels": (8, 8), "decoder_block_out_channels": (8, 8), "encoder_qkv_multiscales": ((), (5,)), "decoder_qkv_multiscales": ((), (5,)), "encoder_layers_per_block": (1, 1), "decoder_layers_per_block": [1, 1], "downsample_block_type": "conv", "upsample_block_type": "interpolate", "decoder_norm_types": "rms_norm", "decoder_act_fns": "silu", "scaling_factor": 0.41407, } vae_cls = AutoencoderDC tokenizer_cls, tokenizer_id = GemmaTokenizer, "hf-internal-testing/dummy-gemma" text_encoder_cls, text_encoder_id = Gemma2Model, "hf-internal-testing/dummy-gemma-for-diffusers" @property def output_shape(self): return (1, 32, 32, 3) def get_dummy_inputs(self, with_generator=True): batch_size = 1 sequence_length = 16 num_channels = 4 sizes = (32, 32) generator = torch.manual_seed(0) noise = floats_tensor((batch_size, num_channels) + sizes) input_ids = torch.randint(1, sequence_length, size=(batch_size, sequence_length), generator=generator) pipeline_inputs = { "prompt": "", "negative_prompt": "", "num_inference_steps": 4, "guidance_scale": 4.5, "height": 32, "width": 32, "max_sequence_length": sequence_length, "output_type": "np", "complex_human_instruction": None, } if with_generator: pipeline_inputs.update({"generator": generator}) return noise, input_ids, pipeline_inputs @unittest.skip("Not supported in SANA.") def test_modify_padding_mode(self): pass @unittest.skip("Not supported in SANA.") def test_simple_inference_with_text_denoiser_block_scale(self): pass @unittest.skip("Not supported in SANA.") def test_simple_inference_with_text_denoiser_block_scale_for_all_dict_options(self): pass @unittest.skip("Text encoder LoRA is not supported in SANA.") def test_simple_inference_with_partial_text_lora(self): pass @unittest.skip("Text encoder LoRA is not supported in SANA.") def test_simple_inference_with_text_lora(self): pass @unittest.skip("Text encoder LoRA is not supported in SANA.") def test_simple_inference_with_text_lora_and_scale(self): pass @unittest.skip("Text encoder LoRA is not supported in SANA.") def test_simple_inference_with_text_lora_fused(self): pass @unittest.skip("Text encoder LoRA is not supported in SANA.") def test_simple_inference_with_text_lora_save_load(self): pass