# coding=utf-8 # Copyright 2024 HuggingFace Inc and Tencent Hunyuan Team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import gc import unittest import numpy as np import torch from transformers import AutoTokenizer, BertModel, T5EncoderModel from diffusers import ( AutoencoderKL, DDPMScheduler, HunyuanDiT2DModel, HunyuanDiTControlNetPipeline, ) from diffusers.models import HunyuanDiT2DControlNetModel, HunyuanDiT2DMultiControlNetModel from diffusers.utils import load_image from diffusers.utils.testing_utils import ( backend_empty_cache, enable_full_determinism, require_torch_accelerator, slow, torch_device, ) from diffusers.utils.torch_utils import randn_tensor from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class HunyuanDiTControlNetPipelineFastTests(unittest.TestCase, PipelineTesterMixin): pipeline_class = HunyuanDiTControlNetPipeline params = frozenset( [ "prompt", "height", "width", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", ] ) batch_params = frozenset(["prompt", "negative_prompt"]) test_layerwise_casting = True def get_dummy_components(self): torch.manual_seed(0) transformer = HunyuanDiT2DModel( sample_size=16, num_layers=4, patch_size=2, attention_head_dim=8, num_attention_heads=3, in_channels=4, cross_attention_dim=32, cross_attention_dim_t5=32, pooled_projection_dim=16, hidden_size=24, activation_fn="gelu-approximate", ) torch.manual_seed(0) controlnet = HunyuanDiT2DControlNetModel( sample_size=16, transformer_num_layers=4, patch_size=2, attention_head_dim=8, num_attention_heads=3, in_channels=4, cross_attention_dim=32, cross_attention_dim_t5=32, pooled_projection_dim=16, hidden_size=24, activation_fn="gelu-approximate", ) torch.manual_seed(0) vae = AutoencoderKL() scheduler = DDPMScheduler() text_encoder = BertModel.from_pretrained("hf-internal-testing/tiny-random-BertModel") tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-BertModel") text_encoder_2 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5") tokenizer_2 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5") components = { "transformer": transformer.eval(), "vae": vae.eval(), "scheduler": scheduler, "text_encoder": text_encoder, "tokenizer": tokenizer, "text_encoder_2": text_encoder_2, "tokenizer_2": tokenizer_2, "safety_checker": None, "feature_extractor": None, "controlnet": controlnet, } return components def get_dummy_inputs(self, device, seed=0): if str(device).startswith("mps"): generator = torch.manual_seed(seed) else: generator = torch.Generator(device="cpu").manual_seed(seed) control_image = randn_tensor( (1, 3, 16, 16), generator=generator, device=torch.device(device), dtype=torch.float16, ) controlnet_conditioning_scale = 0.5 inputs = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "guidance_scale": 5.0, "output_type": "np", "control_image": control_image, "controlnet_conditioning_scale": controlnet_conditioning_scale, } return inputs def test_controlnet_hunyuandit(self): components = self.get_dummy_components() pipe = HunyuanDiTControlNetPipeline(**components) pipe = pipe.to(torch_device, dtype=torch.float16) pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(torch_device) output = pipe(**inputs) image = output.images image_slice = image[0, -3:, -3:, -1] assert image.shape == (1, 16, 16, 3) expected_slice = np.array( [0.6953125, 0.89208984, 0.59375, 0.5078125, 0.5786133, 0.6035156, 0.5839844, 0.53564453, 0.52246094] ) assert ( np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 ), f"Expected: {expected_slice}, got: {image_slice.flatten()}" def test_inference_batch_single_identical(self): self._test_inference_batch_single_identical( expected_max_diff=1e-3, ) def test_sequential_cpu_offload_forward_pass(self): # TODO(YiYi) need to fix later pass def test_sequential_offload_forward_pass_twice(self): # TODO(YiYi) need to fix later pass def test_save_load_optional_components(self): # TODO(YiYi) need to fix later pass @slow @require_torch_accelerator class HunyuanDiTControlNetPipelineSlowTests(unittest.TestCase): pipeline_class = HunyuanDiTControlNetPipeline def setUp(self): super().setUp() gc.collect() backend_empty_cache(torch_device) def tearDown(self): super().tearDown() gc.collect() backend_empty_cache(torch_device) def test_canny(self): controlnet = HunyuanDiT2DControlNetModel.from_pretrained( "Tencent-Hunyuan/HunyuanDiT-v1.1-ControlNet-Diffusers-Canny", torch_dtype=torch.float16 ) pipe = HunyuanDiTControlNetPipeline.from_pretrained( "Tencent-Hunyuan/HunyuanDiT-v1.1-Diffusers", controlnet=controlnet, torch_dtype=torch.float16 ) pipe.enable_model_cpu_offload(device=torch_device) pipe.set_progress_bar_config(disable=None) generator = torch.Generator(device="cpu").manual_seed(0) prompt = "At night, an ancient Chinese-style lion statue stands in front of the hotel, its eyes gleaming as if guarding the building. The background is the hotel entrance at night, with a close-up, eye-level, and centered composition. This photo presents a realistic photographic style, embodies Chinese sculpture culture, and reveals a mysterious atmosphere." n_prompt = "" control_image = load_image( "https://huggingface.co/Tencent-Hunyuan/HunyuanDiT-v1.1-ControlNet-Diffusers-Canny/resolve/main/canny.jpg?download=true" ) output = pipe( prompt, negative_prompt=n_prompt, control_image=control_image, controlnet_conditioning_scale=0.5, guidance_scale=5.0, num_inference_steps=2, output_type="np", generator=generator, ) image = output.images[0] assert image.shape == (1024, 1024, 3) original_image = image[-3:, -3:, -1].flatten() expected_image = np.array( [0.43652344, 0.4399414, 0.44921875, 0.45043945, 0.45703125, 0.44873047, 0.43579102, 0.44018555, 0.42578125] ) assert np.abs(original_image.flatten() - expected_image).max() < 1e-2 def test_pose(self): controlnet = HunyuanDiT2DControlNetModel.from_pretrained( "Tencent-Hunyuan/HunyuanDiT-v1.1-ControlNet-Diffusers-Pose", torch_dtype=torch.float16 ) pipe = HunyuanDiTControlNetPipeline.from_pretrained( "Tencent-Hunyuan/HunyuanDiT-v1.1-Diffusers", controlnet=controlnet, torch_dtype=torch.float16 ) pipe.enable_model_cpu_offload(device=torch_device) pipe.set_progress_bar_config(disable=None) generator = torch.Generator(device="cpu").manual_seed(0) prompt = "An Asian woman, dressed in a green top, wearing a purple headscarf and a purple scarf, stands in front of a blackboard. The background is the blackboard. The photo is presented in a close-up, eye-level, and centered composition, adopting a realistic photographic style" n_prompt = "" control_image = load_image( "https://huggingface.co/Tencent-Hunyuan/HunyuanDiT-v1.1-ControlNet-Diffusers-Pose/resolve/main/pose.jpg?download=true" ) output = pipe( prompt, negative_prompt=n_prompt, control_image=control_image, controlnet_conditioning_scale=0.5, guidance_scale=5.0, num_inference_steps=2, output_type="np", generator=generator, ) image = output.images[0] assert image.shape == (1024, 1024, 3) original_image = image[-3:, -3:, -1].flatten() expected_image = np.array( [0.4091797, 0.4177246, 0.39526367, 0.4194336, 0.40356445, 0.3857422, 0.39208984, 0.40429688, 0.37451172] ) assert np.abs(original_image.flatten() - expected_image).max() < 1e-2 def test_depth(self): controlnet = HunyuanDiT2DControlNetModel.from_pretrained( "Tencent-Hunyuan/HunyuanDiT-v1.1-ControlNet-Diffusers-Depth", torch_dtype=torch.float16 ) pipe = HunyuanDiTControlNetPipeline.from_pretrained( "Tencent-Hunyuan/HunyuanDiT-v1.1-Diffusers", controlnet=controlnet, torch_dtype=torch.float16 ) pipe.enable_model_cpu_offload(device=torch_device) pipe.set_progress_bar_config(disable=None) generator = torch.Generator(device="cpu").manual_seed(0) prompt = "In the dense forest, a black and white panda sits quietly in green trees and red flowers, surrounded by mountains, rivers, and the ocean. The background is the forest in a bright environment." n_prompt = "" control_image = load_image( "https://huggingface.co/Tencent-Hunyuan/HunyuanDiT-v1.1-ControlNet-Diffusers-Depth/resolve/main/depth.jpg?download=true" ) output = pipe( prompt, negative_prompt=n_prompt, control_image=control_image, controlnet_conditioning_scale=0.5, guidance_scale=5.0, num_inference_steps=2, output_type="np", generator=generator, ) image = output.images[0] assert image.shape == (1024, 1024, 3) original_image = image[-3:, -3:, -1].flatten() expected_image = np.array( [0.31982422, 0.32177734, 0.30126953, 0.3190918, 0.3100586, 0.31396484, 0.3232422, 0.33544922, 0.30810547] ) assert np.abs(original_image.flatten() - expected_image).max() < 1e-2 def test_multi_controlnet(self): controlnet = HunyuanDiT2DControlNetModel.from_pretrained( "Tencent-Hunyuan/HunyuanDiT-v1.1-ControlNet-Diffusers-Canny", torch_dtype=torch.float16 ) controlnet = HunyuanDiT2DMultiControlNetModel([controlnet, controlnet]) pipe = HunyuanDiTControlNetPipeline.from_pretrained( "Tencent-Hunyuan/HunyuanDiT-v1.1-Diffusers", controlnet=controlnet, torch_dtype=torch.float16 ) pipe.enable_model_cpu_offload(device=torch_device) pipe.set_progress_bar_config(disable=None) generator = torch.Generator(device="cpu").manual_seed(0) prompt = "At night, an ancient Chinese-style lion statue stands in front of the hotel, its eyes gleaming as if guarding the building. The background is the hotel entrance at night, with a close-up, eye-level, and centered composition. This photo presents a realistic photographic style, embodies Chinese sculpture culture, and reveals a mysterious atmosphere." n_prompt = "" control_image = load_image( "https://huggingface.co/Tencent-Hunyuan/HunyuanDiT-v1.1-ControlNet-Diffusers-Canny/resolve/main/canny.jpg?download=true" ) output = pipe( prompt, negative_prompt=n_prompt, control_image=[control_image, control_image], controlnet_conditioning_scale=[0.25, 0.25], guidance_scale=5.0, num_inference_steps=2, output_type="np", generator=generator, ) image = output.images[0] assert image.shape == (1024, 1024, 3) original_image = image[-3:, -3:, -1].flatten() expected_image = np.array( [0.43652344, 0.44018555, 0.4494629, 0.44995117, 0.45654297, 0.44848633, 0.43603516, 0.4404297, 0.42626953] ) assert np.abs(original_image.flatten() - expected_image).max() < 1e-2