# coding=utf-8 # Copyright 2024 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # This model implementation is heavily based on: import inspect import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, ControlNetModel, DDIMScheduler, StableDiffusionControlNetInpaintPipeline, StableDiffusionControlNetPAGInpaintPipeline, UNet2DConditionModel, ) from diffusers.utils.testing_utils import ( enable_full_determinism, floats_tensor, ) from diffusers.utils.torch_utils import randn_tensor from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, ) from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class StableDiffusionControlNetPAGInpaintPipelineFastTests( PipelineLatentTesterMixin, PipelineKarrasSchedulerTesterMixin, PipelineTesterMixin, unittest.TestCase ): pipeline_class = StableDiffusionControlNetPAGInpaintPipeline params = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS batch_params = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS image_params = frozenset({"control_image"}) # skip `image` and `mask` for now, only test for control_image image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS def get_dummy_components(self): # Copied from tests.pipelines.controlnet.test_controlnet_inpaint.ControlNetInpaintPipelineFastTests.get_dummy_components torch.manual_seed(0) unet = UNet2DConditionModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=9, out_channels=4, down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), cross_attention_dim=32, ) torch.manual_seed(0) controlnet = ControlNetModel( block_out_channels=(32, 64), layers_per_block=2, in_channels=4, down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), cross_attention_dim=32, conditioning_embedding_out_channels=(16, 32), ) torch.manual_seed(0) scheduler = DDIMScheduler( beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", clip_sample=False, set_alpha_to_one=False, ) torch.manual_seed(0) vae = AutoencoderKL( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], latent_channels=4, ) torch.manual_seed(0) text_encoder_config = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1e-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, ) text_encoder = CLIPTextModel(text_encoder_config) tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") components = { "unet": unet, "controlnet": controlnet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, "image_encoder": None, } return components def get_dummy_inputs(self, device, seed=0): if str(device).startswith("mps"): generator = torch.manual_seed(seed) else: generator = torch.Generator(device=device).manual_seed(seed) controlnet_embedder_scale_factor = 2 control_image = randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor), generator=generator, device=torch.device(device), ) init_image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device) init_image = init_image.cpu().permute(0, 2, 3, 1)[0] image = Image.fromarray(np.uint8(init_image)).convert("RGB").resize((64, 64)) mask_image = Image.fromarray(np.uint8(init_image + 4)).convert("RGB").resize((64, 64)) inputs = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "pag_scale": 3.0, "output_type": "np", "image": image, "mask_image": mask_image, "control_image": control_image, } return inputs def test_pag_disable_enable(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator components = self.get_dummy_components() # base pipeline (expect same output when pag is disabled) pipe_sd = StableDiffusionControlNetInpaintPipeline(**components) pipe_sd = pipe_sd.to(device) pipe_sd.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(device) del inputs["pag_scale"] assert ( "pag_scale" not in inspect.signature(pipe_sd.__call__).parameters ), f"`pag_scale` should not be a call parameter of the base pipeline {pipe_sd.__calss__.__name__}." out = pipe_sd(**inputs).images[0, -3:, -3:, -1] # pag disabled with pag_scale=0.0 pipe_pag = self.pipeline_class(**components) pipe_pag = pipe_pag.to(device) pipe_pag.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(device) inputs["pag_scale"] = 0.0 out_pag_disabled = pipe_pag(**inputs).images[0, -3:, -3:, -1] # pag enabled pipe_pag = self.pipeline_class(**components, pag_applied_layers=["mid", "up", "down"]) pipe_pag = pipe_pag.to(device) pipe_pag.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(device) out_pag_enabled = pipe_pag(**inputs).images[0, -3:, -3:, -1] assert np.abs(out.flatten() - out_pag_disabled.flatten()).max() < 1e-3 assert np.abs(out.flatten() - out_pag_enabled.flatten()).max() > 1e-3 def test_pag_cfg(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator components = self.get_dummy_components() pipe_pag = self.pipeline_class(**components, pag_applied_layers=["mid", "up", "down"]) pipe_pag = pipe_pag.to(device) pipe_pag.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(device) image = pipe_pag(**inputs).images image_slice = image[0, -3:, -3:, -1] assert image.shape == ( 1, 64, 64, 3, ), f"the shape of the output image should be (1, 64, 64, 3) but got {image.shape}" expected_slice = np.array( [0.7488756, 0.61194265, 0.53382546, 0.5993959, 0.6193306, 0.56880975, 0.41277143, 0.5050145, 0.49376273] ) max_diff = np.abs(image_slice.flatten() - expected_slice).max() assert max_diff < 1e-3, f"output is different from expected, {image_slice.flatten()}" def test_pag_uncond(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator components = self.get_dummy_components() pipe_pag = self.pipeline_class(**components, pag_applied_layers=["mid", "up", "down"]) pipe_pag = pipe_pag.to(device) pipe_pag.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(device) inputs["guidance_scale"] = 0.0 image = pipe_pag(**inputs).images image_slice = image[0, -3:, -3:, -1] assert image.shape == ( 1, 64, 64, 3, ), f"the shape of the output image should be (1, 64, 64, 3) but got {image.shape}" expected_slice = np.array( [0.7410303, 0.5989337, 0.530866, 0.60571927, 0.6162597, 0.5719856, 0.4187478, 0.5101238, 0.4978468] ) max_diff = np.abs(image_slice.flatten() - expected_slice).max() assert max_diff < 1e-3, f"output is different from expected, {image_slice.flatten()}"