import gc import inspect import random import unittest import numpy as np import torch from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, T5EncoderModel from diffusers import ( AutoencoderKL, AutoPipelineForImage2Image, FlowMatchEulerDiscreteScheduler, SD3Transformer2DModel, StableDiffusion3Img2ImgPipeline, StableDiffusion3PAGImg2ImgPipeline, ) from diffusers.utils.testing_utils import ( enable_full_determinism, floats_tensor, load_image, require_torch_gpu, slow, torch_device, ) from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, TEXT_TO_IMAGE_CALLBACK_CFG_PARAMS, ) from ..test_pipelines_common import ( PipelineTesterMixin, ) enable_full_determinism() class StableDiffusion3PAGImg2ImgPipelineFastTests(unittest.TestCase, PipelineTesterMixin): pipeline_class = StableDiffusion3PAGImg2ImgPipeline params = TEXT_GUIDED_IMAGE_VARIATION_PARAMS.union({"pag_scale", "pag_adaptive_scale"}) - {"height", "width"} required_optional_params = PipelineTesterMixin.required_optional_params - {"latents"} batch_params = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS image_params = IMAGE_TO_IMAGE_IMAGE_PARAMS image_latens_params = IMAGE_TO_IMAGE_IMAGE_PARAMS callback_cfg_params = TEXT_TO_IMAGE_CALLBACK_CFG_PARAMS test_xformers_attention = False def get_dummy_components(self): torch.manual_seed(0) transformer = SD3Transformer2DModel( sample_size=32, patch_size=1, in_channels=4, num_layers=2, attention_head_dim=8, num_attention_heads=4, caption_projection_dim=32, joint_attention_dim=32, pooled_projection_dim=64, out_channels=4, ) clip_text_encoder_config = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1e-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, hidden_act="gelu", projection_dim=32, ) torch.manual_seed(0) text_encoder = CLIPTextModelWithProjection(clip_text_encoder_config) torch.manual_seed(0) text_encoder_2 = CLIPTextModelWithProjection(clip_text_encoder_config) text_encoder_3 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5") tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") tokenizer_2 = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") tokenizer_3 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5") torch.manual_seed(0) vae = AutoencoderKL( sample_size=32, in_channels=3, out_channels=3, block_out_channels=(4,), layers_per_block=1, latent_channels=4, norm_num_groups=1, use_quant_conv=False, use_post_quant_conv=False, shift_factor=0.0609, scaling_factor=1.5035, ) scheduler = FlowMatchEulerDiscreteScheduler() return { "scheduler": scheduler, "text_encoder": text_encoder, "text_encoder_2": text_encoder_2, "text_encoder_3": text_encoder_3, "tokenizer": tokenizer, "tokenizer_2": tokenizer_2, "tokenizer_3": tokenizer_3, "transformer": transformer, "vae": vae, } def get_dummy_inputs(self, device, seed=0): image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device) image = image / 2 + 0.5 if str(device).startswith("mps"): generator = torch.manual_seed(seed) else: generator = torch.Generator(device="cpu").manual_seed(seed) inputs = { "prompt": "A painting of a squirrel eating a burger", "image": image, "generator": generator, "num_inference_steps": 2, "guidance_scale": 5.0, "output_type": "np", "pag_scale": 0.7, } return inputs def test_pag_disable_enable(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator components = self.get_dummy_components() # base pipeline (expect same output when pag is disabled) pipe_sd = StableDiffusion3Img2ImgPipeline(**components) pipe_sd = pipe_sd.to(device) pipe_sd.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(device) del inputs["pag_scale"] assert ( "pag_scale" not in inspect.signature(pipe_sd.__call__).parameters ), f"`pag_scale` should not be a call parameter of the base pipeline {pipe_sd.__class__.__name__}." out = pipe_sd(**inputs).images[0, -3:, -3:, -1] components = self.get_dummy_components() # pag disabled with pag_scale=0.0 pipe_pag = self.pipeline_class(**components) pipe_pag = pipe_pag.to(device) pipe_pag.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(device) inputs["pag_scale"] = 0.0 out_pag_disabled = pipe_pag(**inputs).images[0, -3:, -3:, -1] assert np.abs(out.flatten() - out_pag_disabled.flatten()).max() < 1e-3 def test_pag_inference(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator components = self.get_dummy_components() pipe_pag = self.pipeline_class(**components, pag_applied_layers=["blocks.0"]) pipe_pag = pipe_pag.to(device) pipe_pag.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(device) image = pipe_pag(**inputs).images image_slice = image[0, -3:, -3:, -1] assert image.shape == ( 1, 32, 32, 3, ), f"the shape of the output image should be (1, 32, 32, 3) but got {image.shape}" expected_slice = np.array( [0.66063476, 0.44838923, 0.5484299, 0.7242875, 0.5970012, 0.6015729, 0.53080845, 0.52220416, 0.56397927] ) max_diff = np.abs(image_slice.flatten() - expected_slice).max() self.assertLessEqual(max_diff, 1e-3) @slow @require_torch_gpu class StableDiffusion3PAGImg2ImgPipelineIntegrationTests(unittest.TestCase): pipeline_class = StableDiffusion3PAGImg2ImgPipeline repo_id = "stabilityai/stable-diffusion-3-medium-diffusers" def setUp(self): super().setUp() gc.collect() torch.cuda.empty_cache() def tearDown(self): super().tearDown() gc.collect() torch.cuda.empty_cache() def get_inputs( self, device, generator_device="cpu", dtype=torch.float32, seed=0, guidance_scale=7.0, pag_scale=0.7 ): img_url = ( "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/sdxl-text2img.png" ) init_image = load_image(img_url) generator = torch.Generator(device=generator_device).manual_seed(seed) inputs = { "prompt": "an astronaut in a space suit walking through a jungle", "generator": generator, "image": init_image, "num_inference_steps": 12, "strength": 0.6, "guidance_scale": guidance_scale, "pag_scale": pag_scale, "output_type": "np", } return inputs def test_pag_cfg(self): pipeline = AutoPipelineForImage2Image.from_pretrained( self.repo_id, enable_pag=True, torch_dtype=torch.float16, pag_applied_layers=["blocks.17"] ) pipeline.enable_model_cpu_offload() pipeline.set_progress_bar_config(disable=None) inputs = self.get_inputs(torch_device) image = pipeline(**inputs).images image_slice = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 1024, 1024, 3) expected_slice = np.array( [ 0.16772461, 0.17626953, 0.18432617, 0.17822266, 0.18359375, 0.17626953, 0.17407227, 0.17700195, 0.17822266, ] ) assert ( np.abs(image_slice.flatten() - expected_slice).max() < 1e-3 ), f"output is different from expected, {image_slice.flatten()}" def test_pag_uncond(self): pipeline = AutoPipelineForImage2Image.from_pretrained( self.repo_id, enable_pag=True, torch_dtype=torch.float16, pag_applied_layers=["blocks.(4|17)"] ) pipeline.enable_model_cpu_offload() pipeline.set_progress_bar_config(disable=None) inputs = self.get_inputs(torch_device, guidance_scale=0.0, pag_scale=1.8) image = pipeline(**inputs).images image_slice = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 1024, 1024, 3) expected_slice = np.array( [0.1508789, 0.16210938, 0.17138672, 0.16210938, 0.17089844, 0.16137695, 0.16235352, 0.16430664, 0.16455078] ) assert ( np.abs(image_slice.flatten() - expected_slice).max() < 1e-3 ), f"output is different from expected, {image_slice.flatten()}"