import gc import unittest import numpy as np import torch import torch.nn as nn from diffusers import ( AuraFlowPipeline, AuraFlowTransformer2DModel, FluxPipeline, FluxTransformer2DModel, GGUFQuantizationConfig, SD3Transformer2DModel, StableDiffusion3Pipeline, ) from diffusers.utils.testing_utils import ( is_gguf_available, nightly, numpy_cosine_similarity_distance, require_accelerate, require_big_gpu_with_torch_cuda, require_gguf_version_greater_or_equal, torch_device, ) if is_gguf_available(): from diffusers.quantizers.gguf.utils import GGUFLinear, GGUFParameter @nightly @require_big_gpu_with_torch_cuda @require_accelerate @require_gguf_version_greater_or_equal("0.10.0") class GGUFSingleFileTesterMixin: ckpt_path = None model_cls = None torch_dtype = torch.bfloat16 expected_memory_use_in_gb = 5 def test_gguf_parameters(self): quant_storage_type = torch.uint8 quantization_config = GGUFQuantizationConfig(compute_dtype=self.torch_dtype) model = self.model_cls.from_single_file(self.ckpt_path, quantization_config=quantization_config) for param_name, param in model.named_parameters(): if isinstance(param, GGUFParameter): assert hasattr(param, "quant_type") assert param.dtype == quant_storage_type def test_gguf_linear_layers(self): quantization_config = GGUFQuantizationConfig(compute_dtype=self.torch_dtype) model = self.model_cls.from_single_file(self.ckpt_path, quantization_config=quantization_config) for name, module in model.named_modules(): if isinstance(module, torch.nn.Linear) and hasattr(module.weight, "quant_type"): assert module.weight.dtype == torch.uint8 if module.bias is not None: assert module.bias.dtype == torch.float32 def test_gguf_memory_usage(self): quantization_config = GGUFQuantizationConfig(compute_dtype=self.torch_dtype) model = self.model_cls.from_single_file( self.ckpt_path, quantization_config=quantization_config, torch_dtype=self.torch_dtype ) model.to("cuda") assert (model.get_memory_footprint() / 1024**3) < self.expected_memory_use_in_gb inputs = self.get_dummy_inputs() torch.cuda.reset_peak_memory_stats() torch.cuda.empty_cache() with torch.no_grad(): model(**inputs) max_memory = torch.cuda.max_memory_allocated() assert (max_memory / 1024**3) < self.expected_memory_use_in_gb def test_keep_modules_in_fp32(self): r""" A simple tests to check if the modules under `_keep_in_fp32_modules` are kept in fp32. Also ensures if inference works. """ _keep_in_fp32_modules = self.model_cls._keep_in_fp32_modules self.model_cls._keep_in_fp32_modules = ["proj_out"] quantization_config = GGUFQuantizationConfig(compute_dtype=self.torch_dtype) model = self.model_cls.from_single_file(self.ckpt_path, quantization_config=quantization_config) for name, module in model.named_modules(): if isinstance(module, torch.nn.Linear): if name in model._keep_in_fp32_modules: assert module.weight.dtype == torch.float32 self.model_cls._keep_in_fp32_modules = _keep_in_fp32_modules def test_dtype_assignment(self): quantization_config = GGUFQuantizationConfig(compute_dtype=self.torch_dtype) model = self.model_cls.from_single_file(self.ckpt_path, quantization_config=quantization_config) with self.assertRaises(ValueError): # Tries with a `dtype` model.to(torch.float16) with self.assertRaises(ValueError): # Tries with a `device` and `dtype` model.to(device="cuda:0", dtype=torch.float16) with self.assertRaises(ValueError): # Tries with a cast model.float() with self.assertRaises(ValueError): # Tries with a cast model.half() # This should work model.to("cuda") def test_dequantize_model(self): quantization_config = GGUFQuantizationConfig(compute_dtype=self.torch_dtype) model = self.model_cls.from_single_file(self.ckpt_path, quantization_config=quantization_config) model.dequantize() def _check_for_gguf_linear(model): has_children = list(model.children()) if not has_children: return for name, module in model.named_children(): if isinstance(module, nn.Linear): assert not isinstance(module, GGUFLinear), f"{name} is still GGUFLinear" assert not isinstance(module.weight, GGUFParameter), f"{name} weight is still GGUFParameter" for name, module in model.named_children(): _check_for_gguf_linear(module) class FluxGGUFSingleFileTests(GGUFSingleFileTesterMixin, unittest.TestCase): ckpt_path = "https://huggingface.co/city96/FLUX.1-dev-gguf/blob/main/flux1-dev-Q2_K.gguf" torch_dtype = torch.bfloat16 model_cls = FluxTransformer2DModel expected_memory_use_in_gb = 5 def setUp(self): gc.collect() torch.cuda.empty_cache() def tearDown(self): gc.collect() torch.cuda.empty_cache() def get_dummy_inputs(self): return { "hidden_states": torch.randn((1, 4096, 64), generator=torch.Generator("cpu").manual_seed(0)).to( torch_device, self.torch_dtype ), "encoder_hidden_states": torch.randn( (1, 512, 4096), generator=torch.Generator("cpu").manual_seed(0), ).to(torch_device, self.torch_dtype), "pooled_projections": torch.randn( (1, 768), generator=torch.Generator("cpu").manual_seed(0), ).to(torch_device, self.torch_dtype), "timestep": torch.tensor([1]).to(torch_device, self.torch_dtype), "img_ids": torch.randn((4096, 3), generator=torch.Generator("cpu").manual_seed(0)).to( torch_device, self.torch_dtype ), "txt_ids": torch.randn((512, 3), generator=torch.Generator("cpu").manual_seed(0)).to( torch_device, self.torch_dtype ), "guidance": torch.tensor([3.5]).to(torch_device, self.torch_dtype), } def test_pipeline_inference(self): quantization_config = GGUFQuantizationConfig(compute_dtype=self.torch_dtype) transformer = self.model_cls.from_single_file( self.ckpt_path, quantization_config=quantization_config, torch_dtype=self.torch_dtype ) pipe = FluxPipeline.from_pretrained( "black-forest-labs/FLUX.1-dev", transformer=transformer, torch_dtype=self.torch_dtype ) pipe.enable_model_cpu_offload() prompt = "a cat holding a sign that says hello" output = pipe( prompt=prompt, num_inference_steps=2, generator=torch.Generator("cpu").manual_seed(0), output_type="np" ).images[0] output_slice = output[:3, :3, :].flatten() expected_slice = np.array( [ 0.47265625, 0.43359375, 0.359375, 0.47070312, 0.421875, 0.34375, 0.46875, 0.421875, 0.34765625, 0.46484375, 0.421875, 0.34179688, 0.47070312, 0.42578125, 0.34570312, 0.46875, 0.42578125, 0.3515625, 0.45507812, 0.4140625, 0.33984375, 0.4609375, 0.41796875, 0.34375, 0.45898438, 0.41796875, 0.34375, ] ) max_diff = numpy_cosine_similarity_distance(expected_slice, output_slice) assert max_diff < 1e-4 class SD35LargeGGUFSingleFileTests(GGUFSingleFileTesterMixin, unittest.TestCase): ckpt_path = "https://huggingface.co/city96/stable-diffusion-3.5-large-gguf/blob/main/sd3.5_large-Q4_0.gguf" torch_dtype = torch.bfloat16 model_cls = SD3Transformer2DModel expected_memory_use_in_gb = 5 def setUp(self): gc.collect() torch.cuda.empty_cache() def tearDown(self): gc.collect() torch.cuda.empty_cache() def get_dummy_inputs(self): return { "hidden_states": torch.randn((1, 16, 64, 64), generator=torch.Generator("cpu").manual_seed(0)).to( torch_device, self.torch_dtype ), "encoder_hidden_states": torch.randn( (1, 512, 4096), generator=torch.Generator("cpu").manual_seed(0), ).to(torch_device, self.torch_dtype), "pooled_projections": torch.randn( (1, 2048), generator=torch.Generator("cpu").manual_seed(0), ).to(torch_device, self.torch_dtype), "timestep": torch.tensor([1]).to(torch_device, self.torch_dtype), } def test_pipeline_inference(self): quantization_config = GGUFQuantizationConfig(compute_dtype=self.torch_dtype) transformer = self.model_cls.from_single_file( self.ckpt_path, quantization_config=quantization_config, torch_dtype=self.torch_dtype ) pipe = StableDiffusion3Pipeline.from_pretrained( "stabilityai/stable-diffusion-3.5-large", transformer=transformer, torch_dtype=self.torch_dtype ) pipe.enable_model_cpu_offload() prompt = "a cat holding a sign that says hello" output = pipe( prompt=prompt, num_inference_steps=2, generator=torch.Generator("cpu").manual_seed(0), output_type="np" ).images[0] output_slice = output[:3, :3, :].flatten() expected_slice = np.array( [ 0.17578125, 0.27539062, 0.27734375, 0.11914062, 0.26953125, 0.25390625, 0.109375, 0.25390625, 0.25, 0.15039062, 0.26171875, 0.28515625, 0.13671875, 0.27734375, 0.28515625, 0.12109375, 0.26757812, 0.265625, 0.16210938, 0.29882812, 0.28515625, 0.15625, 0.30664062, 0.27734375, 0.14648438, 0.29296875, 0.26953125, ] ) max_diff = numpy_cosine_similarity_distance(expected_slice, output_slice) assert max_diff < 1e-4 class SD35MediumGGUFSingleFileTests(GGUFSingleFileTesterMixin, unittest.TestCase): ckpt_path = "https://huggingface.co/city96/stable-diffusion-3.5-medium-gguf/blob/main/sd3.5_medium-Q3_K_M.gguf" torch_dtype = torch.bfloat16 model_cls = SD3Transformer2DModel expected_memory_use_in_gb = 2 def setUp(self): gc.collect() torch.cuda.empty_cache() def tearDown(self): gc.collect() torch.cuda.empty_cache() def get_dummy_inputs(self): return { "hidden_states": torch.randn((1, 16, 64, 64), generator=torch.Generator("cpu").manual_seed(0)).to( torch_device, self.torch_dtype ), "encoder_hidden_states": torch.randn( (1, 512, 4096), generator=torch.Generator("cpu").manual_seed(0), ).to(torch_device, self.torch_dtype), "pooled_projections": torch.randn( (1, 2048), generator=torch.Generator("cpu").manual_seed(0), ).to(torch_device, self.torch_dtype), "timestep": torch.tensor([1]).to(torch_device, self.torch_dtype), } def test_pipeline_inference(self): quantization_config = GGUFQuantizationConfig(compute_dtype=self.torch_dtype) transformer = self.model_cls.from_single_file( self.ckpt_path, quantization_config=quantization_config, torch_dtype=self.torch_dtype ) pipe = StableDiffusion3Pipeline.from_pretrained( "stabilityai/stable-diffusion-3.5-medium", transformer=transformer, torch_dtype=self.torch_dtype ) pipe.enable_model_cpu_offload() prompt = "a cat holding a sign that says hello" output = pipe( prompt=prompt, num_inference_steps=2, generator=torch.Generator("cpu").manual_seed(0), output_type="np" ).images[0] output_slice = output[:3, :3, :].flatten() expected_slice = np.array( [ 0.625, 0.6171875, 0.609375, 0.65625, 0.65234375, 0.640625, 0.6484375, 0.640625, 0.625, 0.6484375, 0.63671875, 0.6484375, 0.66796875, 0.65625, 0.65234375, 0.6640625, 0.6484375, 0.6328125, 0.6640625, 0.6484375, 0.640625, 0.67578125, 0.66015625, 0.62109375, 0.671875, 0.65625, 0.62109375, ] ) max_diff = numpy_cosine_similarity_distance(expected_slice, output_slice) assert max_diff < 1e-4 class AuraFlowGGUFSingleFileTests(GGUFSingleFileTesterMixin, unittest.TestCase): ckpt_path = "https://huggingface.co/city96/AuraFlow-v0.3-gguf/blob/main/aura_flow_0.3-Q2_K.gguf" torch_dtype = torch.bfloat16 model_cls = AuraFlowTransformer2DModel expected_memory_use_in_gb = 4 def setUp(self): gc.collect() torch.cuda.empty_cache() def tearDown(self): gc.collect() torch.cuda.empty_cache() def get_dummy_inputs(self): return { "hidden_states": torch.randn((1, 4, 64, 64), generator=torch.Generator("cpu").manual_seed(0)).to( torch_device, self.torch_dtype ), "encoder_hidden_states": torch.randn( (1, 512, 2048), generator=torch.Generator("cpu").manual_seed(0), ).to(torch_device, self.torch_dtype), "timestep": torch.tensor([1]).to(torch_device, self.torch_dtype), } def test_pipeline_inference(self): quantization_config = GGUFQuantizationConfig(compute_dtype=self.torch_dtype) transformer = self.model_cls.from_single_file( self.ckpt_path, quantization_config=quantization_config, torch_dtype=self.torch_dtype ) pipe = AuraFlowPipeline.from_pretrained( "fal/AuraFlow-v0.3", transformer=transformer, torch_dtype=self.torch_dtype ) pipe.enable_model_cpu_offload() prompt = "a pony holding a sign that says hello" output = pipe( prompt=prompt, num_inference_steps=2, generator=torch.Generator("cpu").manual_seed(0), output_type="np" ).images[0] output_slice = output[:3, :3, :].flatten() expected_slice = np.array( [ 0.46484375, 0.546875, 0.64453125, 0.48242188, 0.53515625, 0.59765625, 0.47070312, 0.5078125, 0.5703125, 0.42773438, 0.50390625, 0.5703125, 0.47070312, 0.515625, 0.57421875, 0.45898438, 0.48632812, 0.53515625, 0.4453125, 0.5078125, 0.56640625, 0.47851562, 0.5234375, 0.57421875, 0.48632812, 0.5234375, 0.56640625, ] ) max_diff = numpy_cosine_similarity_distance(expected_slice, output_slice) assert max_diff < 1e-4