import gc import tempfile import unittest import torch from diffusers import EulerDiscreteScheduler, StableDiffusionInstructPix2PixPipeline, StableDiffusionPipeline from diffusers.loaders.single_file_utils import _extract_repo_id_and_weights_name from diffusers.utils import load_image from diffusers.utils.testing_utils import ( backend_empty_cache, enable_full_determinism, nightly, require_torch_accelerator, slow, torch_device, ) from .single_file_testing_utils import ( SDSingleFileTesterMixin, download_original_config, download_single_file_checkpoint, ) enable_full_determinism() @slow @require_torch_accelerator class StableDiffusionPipelineSingleFileSlowTests(unittest.TestCase, SDSingleFileTesterMixin): pipeline_class = StableDiffusionPipeline ckpt_path = ( "https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5/blob/main/v1-5-pruned-emaonly.safetensors" ) original_config = ( "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml" ) repo_id = "stable-diffusion-v1-5/stable-diffusion-v1-5" def setUp(self): super().setUp() gc.collect() backend_empty_cache(torch_device) def tearDown(self): super().tearDown() gc.collect() backend_empty_cache(torch_device) def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0): generator = torch.Generator(device=generator_device).manual_seed(seed) inputs = { "prompt": "a fantasy landscape, concept art, high resolution", "generator": generator, "num_inference_steps": 2, "strength": 0.75, "guidance_scale": 7.5, "output_type": "np", } return inputs def test_single_file_format_inference_is_same_as_pretrained(self): super().test_single_file_format_inference_is_same_as_pretrained(expected_max_diff=1e-3) def test_single_file_legacy_scheduler_loading(self): with tempfile.TemporaryDirectory() as tmpdir: repo_id, weight_name = _extract_repo_id_and_weights_name(self.ckpt_path) local_ckpt_path = download_single_file_checkpoint(repo_id, weight_name, tmpdir) local_original_config = download_original_config(self.original_config, tmpdir) pipe = self.pipeline_class.from_single_file( local_ckpt_path, original_config=local_original_config, cache_dir=tmpdir, local_files_only=True, scheduler_type="euler", ) # Default is PNDM for this checkpoint assert isinstance(pipe.scheduler, EulerDiscreteScheduler) def test_single_file_legacy_scaling_factor(self): new_scaling_factor = 10.0 init_pipe = self.pipeline_class.from_single_file(self.ckpt_path) pipe = self.pipeline_class.from_single_file(self.ckpt_path, scaling_factor=new_scaling_factor) assert init_pipe.vae.config.scaling_factor != new_scaling_factor assert pipe.vae.config.scaling_factor == new_scaling_factor @slow class StableDiffusion21PipelineSingleFileSlowTests(unittest.TestCase, SDSingleFileTesterMixin): pipeline_class = StableDiffusionPipeline ckpt_path = "https://huggingface.co/stabilityai/stable-diffusion-2-1/blob/main/v2-1_768-ema-pruned.safetensors" original_config = "https://raw.githubusercontent.com/Stability-AI/stablediffusion/main/configs/stable-diffusion/v2-inference-v.yaml" repo_id = "stabilityai/stable-diffusion-2-1" def setUp(self): super().setUp() gc.collect() backend_empty_cache(torch_device) def tearDown(self): super().tearDown() gc.collect() backend_empty_cache(torch_device) def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0): generator = torch.Generator(device=generator_device).manual_seed(seed) inputs = { "prompt": "a fantasy landscape, concept art, high resolution", "generator": generator, "num_inference_steps": 2, "strength": 0.75, "guidance_scale": 7.5, "output_type": "np", } return inputs def test_single_file_format_inference_is_same_as_pretrained(self): super().test_single_file_format_inference_is_same_as_pretrained(expected_max_diff=1e-3) @nightly @slow @require_torch_accelerator class StableDiffusionInstructPix2PixPipelineSingleFileSlowTests(unittest.TestCase, SDSingleFileTesterMixin): pipeline_class = StableDiffusionInstructPix2PixPipeline ckpt_path = "https://huggingface.co/timbrooks/instruct-pix2pix/blob/main/instruct-pix2pix-00-22000.safetensors" original_config = ( "https://raw.githubusercontent.com/timothybrooks/instruct-pix2pix/refs/heads/main/configs/generate.yaml" ) repo_id = "timbrooks/instruct-pix2pix" single_file_kwargs = {"extract_ema": True} def setUp(self): super().setUp() gc.collect() backend_empty_cache(torch_device) def tearDown(self): super().tearDown() gc.collect() backend_empty_cache(torch_device) def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0): generator = torch.Generator(device=generator_device).manual_seed(seed) image = load_image( "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/stable_diffusion_pix2pix/example.jpg" ) inputs = { "prompt": "turn him into a cyborg", "image": image, "generator": generator, "num_inference_steps": 3, "guidance_scale": 7.5, "image_guidance_scale": 1.0, "output_type": "np", } return inputs def test_single_file_format_inference_is_same_as_pretrained(self): super().test_single_file_format_inference_is_same_as_pretrained(expected_max_diff=1e-3)