Spaces:
Sleeping
Sleeping
File size: 2,509 Bytes
f6ffde9 8aec0fe f6ffde9 8aec0fe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 |
import streamlit as st
from transformers import AutoTokenizer, AutoModelForCausalLM
import time
# Streamlit setup
st.title("Telco Chat Bot")
st.page_link("https://github.com/Ali-maatouk/Tele-LLMs", label="Tele-LLMs backend", icon="π±")
# Add text giving credit
col1, col2 = st.columns(2)
if 'conversation' not in st.session_state:
st.session_state.conversation = []
user_input = st.text_input("You:", "") # user input
# Model functions:
@st.cache_resource(show_spinner=False)
def load_model():
""" Load model from Hugging face."""
success_placeholder = st.empty()
with st.spinner("Loading model... please wait"):
model_name = "AliMaatouk/TinyLlama-1.1B-Tele" # Replace with the correct model name
tokenizer = AutoTokenizer.from_pretrained(model_name, torch_dtype="auto")
model = AutoModelForCausalLM.from_pretrained(model_name)
success_placeholder.success("Model loaded successfully!", icon="π₯")
time.sleep(2)
success_placeholder.empty()
return model, tokenizer
def generate_response(user_input):
""" Query the model. """
success_placeholder = st.empty()
with st.spinner("Thinking..."):
inputs = tokenizer(user_input, return_tensors="pt")
#outputs = model.generate(**inputs, max_length=1000, pad_token_id=tokenizer.eos_token_id)
outputs = model.generate(**inputs, max_new_tokens=100)
generated_tokens = outputs[0, len(inputs['input_ids'][0]):]
success_placeholder.success("Response generated!", icon="β
")
time.sleep(2)
success_placeholder.empty()
return tokenizer.decode(generated_tokens, skip_special_tokens=True)
# RUNTIME EVENTS:
# Load model and tokenizer
model, tokenizer = load_model()
# Submit button to send the query
with col1:
if st.button("send"):
if user_input:
st.session_state.conversation.append({"role": "user", "content": user_input})
# Querying model
# Add a loading spinner during model loading
response = generate_response(user_input)
# Display bot response
st.session_state.conversation.append({"role": "bot", "content": response})
# Clear button to reset
with col2:
if st.button("clear chat"):
if user_input:
st.session_state.conversation = []
# Display conversation history
for chat in st.session_state.conversation:
if chat['role'] == 'user':
st.write(f"You: {chat['content']}")
else:
st.write(f"Bot: {chat['content']}") |