|
import random |
|
|
|
import cv2 |
|
import numpy as np |
|
from albumentations import DualTransform, ImageOnlyTransform |
|
from albumentations.augmentations.crops.functional import crop |
|
|
|
|
|
|
|
def isotropically_resize_image(img, size, interpolation_down=cv2.INTER_AREA, interpolation_up=cv2.INTER_CUBIC): |
|
h, w = img.shape[:2] |
|
if max(w, h) == size: |
|
return img |
|
if w > h: |
|
scale = size / w |
|
h = h * scale |
|
w = size |
|
else: |
|
scale = size / h |
|
w = w * scale |
|
h = size |
|
interpolation = interpolation_up if scale > 1 else interpolation_down |
|
resized = cv2.resize(img, (int(w), int(h)), interpolation=interpolation) |
|
return resized |
|
|
|
|
|
class IsotropicResize(DualTransform): |
|
def __init__(self, max_side, interpolation_down=cv2.INTER_AREA, interpolation_up=cv2.INTER_CUBIC, |
|
always_apply=False, p=1): |
|
super(IsotropicResize, self).__init__(always_apply, p) |
|
self.max_side = max_side |
|
self.interpolation_down = interpolation_down |
|
self.interpolation_up = interpolation_up |
|
|
|
def apply(self, img, interpolation_down=cv2.INTER_AREA, interpolation_up=cv2.INTER_CUBIC, **params): |
|
return isotropically_resize_image(img, size=self.max_side, interpolation_down=interpolation_down, |
|
interpolation_up=interpolation_up) |
|
|
|
def apply_to_mask(self, img, **params): |
|
return self.apply(img, interpolation_down=cv2.INTER_NEAREST, interpolation_up=cv2.INTER_NEAREST, **params) |
|
|
|
def get_transform_init_args_names(self): |
|
return ("max_side", "interpolation_down", "interpolation_up") |
|
|
|
|
|
class Resize4xAndBack(ImageOnlyTransform): |
|
def __init__(self, always_apply=False, p=0.5): |
|
super(Resize4xAndBack, self).__init__(always_apply, p) |
|
|
|
def apply(self, img, **params): |
|
h, w = img.shape[:2] |
|
scale = random.choice([2, 4]) |
|
img = cv2.resize(img, (w // scale, h // scale), interpolation=cv2.INTER_AREA) |
|
img = cv2.resize(img, (w, h), |
|
interpolation=random.choice([cv2.INTER_CUBIC, cv2.INTER_LINEAR, cv2.INTER_NEAREST])) |
|
return img |
|
|
|
|
|
class RandomSizedCropNonEmptyMaskIfExists(DualTransform): |
|
|
|
def __init__(self, min_max_height, w2h_ratio=[0.7, 1.3], always_apply=False, p=0.5): |
|
super(RandomSizedCropNonEmptyMaskIfExists, self).__init__(always_apply, p) |
|
|
|
self.min_max_height = min_max_height |
|
self.w2h_ratio = w2h_ratio |
|
|
|
def apply(self, img, x_min=0, x_max=0, y_min=0, y_max=0, **params): |
|
cropped = crop(img, x_min, y_min, x_max, y_max) |
|
return cropped |
|
|
|
@property |
|
def targets_as_params(self): |
|
return ["mask"] |
|
|
|
def get_params_dependent_on_targets(self, params): |
|
mask = params["mask"] |
|
mask_height, mask_width = mask.shape[:2] |
|
crop_height = int(mask_height * random.uniform(self.min_max_height[0], self.min_max_height[1])) |
|
w2h_ratio = random.uniform(*self.w2h_ratio) |
|
crop_width = min(int(crop_height * w2h_ratio), mask_width - 1) |
|
if mask.sum() == 0: |
|
x_min = random.randint(0, mask_width - crop_width + 1) |
|
y_min = random.randint(0, mask_height - crop_height + 1) |
|
else: |
|
mask = mask.sum(axis=-1) if mask.ndim == 3 else mask |
|
non_zero_yx = np.argwhere(mask) |
|
y, x = random.choice(non_zero_yx) |
|
x_min = x - random.randint(0, crop_width - 1) |
|
y_min = y - random.randint(0, crop_height - 1) |
|
x_min = np.clip(x_min, 0, mask_width - crop_width) |
|
y_min = np.clip(y_min, 0, mask_height - crop_height) |
|
|
|
x_max = x_min + crop_height |
|
y_max = y_min + crop_width |
|
y_max = min(mask_height, y_max) |
|
x_max = min(mask_width, x_max) |
|
return {"x_min": x_min, "x_max": x_max, "y_min": y_min, "y_max": y_max} |
|
|
|
def get_transform_init_args_names(self): |
|
return "min_max_height", "height", "width", "w2h_ratio" |
|
|