File size: 8,215 Bytes
161f2e6
 
 
 
 
 
 
 
 
 
 
 
 
f757564
 
161f2e6
 
 
 
 
84a34a1
161f2e6
d2a4d43
161f2e6
 
 
 
 
f757564
 
 
 
 
 
 
 
 
 
 
161f2e6
f757564
161f2e6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f757564
161f2e6
 
 
 
 
 
 
 
 
 
f757564
 
161f2e6
f757564
 
161f2e6
 
 
5f43184
 
161f2e6
f757564
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
161f2e6
f757564
161f2e6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1c1bacf
161f2e6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
from django.shortcuts import render, redirect
from django.http import HttpResponse, JsonResponse, StreamingHttpResponse
import requests
import uuid
import json
import os
from pdf2image import convert_from_path, convert_from_bytes
from django.views.decorators.csrf import csrf_exempt
from django.core.files.storage import FileSystemStorage
import threading
import random
import google.generativeai as genai
import google.ai.generativelanguage as glm
import io
import base64
import os
from .models import UseCases, DocumentTypes


# host_url = "http://16.170.244.54"
host_url = "https://thejagstudio-absoluteai.hf.space/"
googleAPIKey = "AIzaSyBeo4NGA__U6Xxy-aBE6yFm19pgq8TY-TM"
genai.configure(api_key='AIzaSyCg9NGsLygb0sVKpviMkgV4eMPLd9nXW7w')


def getAnswer(images):
    url = "https://content-vision.googleapis.com/v1/images:annotate?alt=json&key="+googleAPIKey
    payload = {"requests": []}
    for img in images:
        # temp = {
        #     "image": {"source": {"imageUri": i}},
        #     "features": [
        #         {
        #             "type": "DOCUMENT_TEXT_DETECTION",
        #             "maxResults": 50,
        #             "model": "builtin/latest",
        #         }
        #     ],
        # }
        temp = {
            "image": {"content": img},
            "features": [
                {
                    "type": "DOCUMENT_TEXT_DETECTION",
                    "maxResults": 50,
                    "model": "builtin/latest",
                }
            ],
        }
        payload["requests"].append(temp)

    headers = {
        "authority": "content-vision.googleapis.com",
        "accept": "*/*",
        "accept-language": "en-US,en;q=0.9,gu;q=0.8",
        "content-type": "application/json",
        "origin": "https://content-vision.googleapis.com",
        "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.0.0 Safari/537.36",
        "x-origin": "https://explorer.apis.google.com",
        "x-requested-with": "XMLHttpRequest",
    }
    response = requests.request("POST", url, headers=headers, data=json.dumps(payload))
    OCRString = ""
    try:
        for i in range(len(response.json()["responses"])):
            OCRString += "\n\n\n"+response.json()["responses"][i]["fullTextAnnotation"]["text"]
    except Exception as e:
        print(e, response.text)
    return OCRString


@csrf_exempt
def dataExtract(request, link):
    if request.method == "POST":
        documentData = DocumentTypes.objects.filter(url=link).first()
        pdf_file = request.FILES["pdf"]
        randomUUID = str(uuid.uuid4())
        fs = FileSystemStorage(location="static/pdf/")
        # filename = fs.save(f"{randomUUID}.pdf", pdf_file)
        # os.mkdir(f"./static/pages/{randomUUID}")
        image_list = []
        images = convert_from_bytes(
            pdf_file.read(),
            dpi=150,
            fmt="png",
            output_file=f"image",
            thread_count=5
            
        )
        for img in images:
            buffer = io.BytesIO()
            img.save(buffer, format='PNG')
            img_bytes = buffer.getvalue()
            # Encode the bytes to base64
            img_base64 = base64.b64encode(img_bytes).decode()
            image_list.append(img_base64)
        # images = convert_from_path(
        #     f"./static/pdf/{randomUUID}.pdf",
        #     dpi=150,
        #     output_folder=f"./static/pages/{randomUUID}",
        #     fmt="png",
        #     output_file=f"image",
        #     thread_count=5,
        #     poppler_path="./poppler-23.05.0/Library/bin/"
        # )
        # for filename in os.listdir(f"./static/pages/{randomUUID}"):
        #     image_list.append(f"/static/pages/{randomUUID}/{filename}")
        # image_Array = []
        # for i in range(len(image_list)):
        #     image_Array.append(host_url + image_list[i])

        OCRString = getAnswer(image_list)
        fields = documentData.fields
        properties = {}
        for field in fields:
            properties[field] = {'type_': 'STRING'}
        entityTool = {
            'function_declarations': [
                {
                    'name': 'entityTool',
                    'description': 'List of entities and value extracted from the text.',
                    'parameters': {
                        'type_': 'OBJECT',
                        'properties': properties,
                        'required': []
                    }
                }
            ]
        }
        safety_settings = [
            {
                "category": "HARM_CATEGORY_HARASSMENT",
                "threshold": "BLOCK_NONE"
            },
            {
                "category": "HARM_CATEGORY_HATE_SPEECH",
                "threshold": "BLOCK_NONE"
            },
            {
                "category": "HARM_CATEGORY_SEXUALLY_EXPLICIT",
                "threshold": "BLOCK_NONE"
            },
            {
                "category": "HARM_CATEGORY_DANGEROUS_CONTENT",
                "threshold": "BLOCK_NONE"
            },
        ]

        model = genai.GenerativeModel(model_name='gemini-2.0-flash-lite', tools=entityTool, safety_settings=safety_settings)
        chat = model.start_chat()
        response = chat.send_message('PDF Data : \n\n'+OCRString)
        fc = response.candidates[0].content.parts[0].function_call
        data = {}
        if fc.name == "entityTool":
            for field in fields:
                try:
                    data[field] = fc.args[field]
                except:
                    pass

        print(data)
        return HttpResponse(
            json.dumps({"images": image_list, "data": data}), content_type="application/json"
        )
    else:
        return HttpResponse("Error")


@csrf_exempt
def imageToText(request):
    if request.method == "POST":
        jsonData = json.loads(request.body)
        imageArr = jsonData["images"]
        for i in range(len(imageArr)):
            imageArr[i] = host_url + imageArr[i]
        imageArr = [imageArr[i: i + 10] for i in range(0, len(imageArr), 10)]
        answers = []
        text = []
        box = []
        for i in range(len(imageArr)):
            textTemp, boxTemp = getAnswer(imageArr[i])
            text.extend(textTemp)
            box.extend(boxTemp)
        return HttpResponse(
            json.dumps({"text": text, "box": box}), content_type="application/json"
        )
    else:
        return HttpResponse("Error")


def documentAIData(request):
    usecases = UseCases.objects.all()
    documentTypes = DocumentTypes.objects.all()
    usecasesArr = []
    documentTypesArr = []
    for doc in documentTypes:
        temp = {}
        temp["img"] = doc.img
        temp["name"] = doc.name
        temp["url"] = doc.url
        temp["usecases"] = []
        for usecase in doc.usecases.all():
            temp["usecases"].append(usecase.heading)
        documentTypesArr.append(temp)
    for usecase in usecases:
        usecasesArr.append(usecase.heading)
    return HttpResponse(json.dumps({"usecases": usecasesArr, "docTypes": documentTypesArr}), content_type="application/json")


def docPages(request, link):
    documentData = DocumentTypes.objects.filter(url=link).first()
    usecases = documentData.usecases.all()
    data = {
        "title": documentData.title,
        "name": documentData.name,
        "subtitle": documentData.subtitle,
        "img": documentData.img,
        "usecases": [],
        "fields": documentData.fields,
        "url": documentData.url,
    }
    for usecase in usecases:
        data["usecases"].append({"heading": usecase.heading, "paragraph": usecase.paragraph})

    return HttpResponse(json.dumps(data), content_type="application/json")


def edditor(request):
    with open("./api/nanonetProducts2.json", "r") as f:
        data = json.load(f)
    documents = DocumentTypes.objects.all()
    for doc in documents:
        for entry in data:
            if entry["name"] == doc.name:
                doc.url = entry["link"]
                doc.save()
                print(doc.name, "Updated", entry["link"])
                break
    return HttpResponse("Hello World")