Spaces:
Running
Running
//===- FuzzedDataProvider.h - Utility header for fuzz targets ---*- C++ -* ===// | |
// | |
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | |
// See https://llvm.org/LICENSE.txt for license information. | |
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | |
// | |
//===----------------------------------------------------------------------===// | |
// A single header library providing an utility class to break up an array of | |
// bytes. Whenever run on the same input, provides the same output, as long as | |
// its methods are called in the same order, with the same arguments. | |
//===----------------------------------------------------------------------===// | |
// In addition to the comments below, the API is also briefly documented at | |
// https://github.com/google/fuzzing/blob/master/docs/split-inputs.md#fuzzed-data-provider | |
class FuzzedDataProvider | |
{ | |
public: | |
// |data| is an array of length |size| that the FuzzedDataProvider wraps to | |
// provide more granular access. |data| must outlive the FuzzedDataProvider. | |
FuzzedDataProvider(const uint8_t *data, size_t size) : data_ptr_(data), remaining_bytes_(size) { } | |
~FuzzedDataProvider() = default; | |
// See the implementation below (after the class definition) for more verbose | |
// comments for each of the methods. | |
// Methods returning std::vector of bytes. These are the most popular choice | |
// when splitting fuzzing input into pieces, as every piece is put into a | |
// separate buffer (i.e. ASan would catch any under-/overflow) and the memory | |
// will be released automatically. | |
template<typename T> | |
std::vector<T> ConsumeBytes(size_t num_bytes); | |
template<typename T> | |
std::vector<T> ConsumeBytesWithTerminator(size_t num_bytes, T terminator = 0); | |
template<typename T> | |
std::vector<T> ConsumeRemainingBytes(); | |
// Methods returning strings. Use only when you need a std::string or a null | |
// terminated C-string. Otherwise, prefer the methods returning std::vector. | |
std::string ConsumeBytesAsString(size_t num_bytes); | |
std::string ConsumeRandomLengthString(size_t max_length); | |
std::string ConsumeRandomLengthString(); | |
std::string ConsumeRemainingBytesAsString(); | |
// Methods returning integer values. | |
template<typename T> | |
T ConsumeIntegral(); | |
template<typename T> | |
T ConsumeIntegralInRange(T min, T max); | |
// Methods returning floating point values. | |
template<typename T> | |
T ConsumeFloatingPoint(); | |
template<typename T> | |
T ConsumeFloatingPointInRange(T min, T max); | |
// 0 <= return value <= 1. | |
template<typename T> | |
T ConsumeProbability(); | |
bool ConsumeBool(); | |
// Returns a value chosen from the given enum. | |
template<typename T> | |
T ConsumeEnum(); | |
// Returns a value from the given array. | |
template<typename T, size_t size> | |
T PickValueInArray(const T (&array)[size]); | |
template<typename T> | |
T PickValueInArray(std::initializer_list<const T> list); | |
// Writes data to the given destination and returns number of bytes written. | |
size_t ConsumeData(void *destination, size_t num_bytes); | |
// Reports the remaining bytes available for fuzzed input. | |
size_t remaining_bytes() { return remaining_bytes_; } | |
private: | |
FuzzedDataProvider(const FuzzedDataProvider &) = delete; | |
FuzzedDataProvider &operator=(const FuzzedDataProvider &) = delete; | |
void CopyAndAdvance(void *destination, size_t num_bytes); | |
void Advance(size_t num_bytes); | |
template<typename T> | |
std::vector<T> ConsumeBytes(size_t size, size_t num_bytes); | |
template<typename TS, typename TU> | |
TS ConvertUnsignedToSigned(TU value); | |
const uint8_t *data_ptr_; | |
size_t remaining_bytes_; | |
}; | |
// Returns a std::vector containing |num_bytes| of input data. If fewer than | |
// |num_bytes| of data remain, returns a shorter std::vector containing all | |
// of the data that's left. Can be used with any byte sized type, such as | |
// char, unsigned char, uint8_t, etc. | |
template<typename T> | |
std::vector<T> FuzzedDataProvider::ConsumeBytes(size_t num_bytes) | |
{ | |
num_bytes = std::min(num_bytes, remaining_bytes_); | |
return ConsumeBytes<T>(num_bytes, num_bytes); | |
} | |
// Similar to |ConsumeBytes|, but also appends the terminator value at the end | |
// of the resulting vector. Useful, when a mutable null-terminated C-string is | |
// needed, for example. But that is a rare case. Better avoid it, if possible, | |
// and prefer using |ConsumeBytes| or |ConsumeBytesAsString| methods. | |
template<typename T> | |
std::vector<T> FuzzedDataProvider::ConsumeBytesWithTerminator(size_t num_bytes, T terminator) | |
{ | |
num_bytes = std::min(num_bytes, remaining_bytes_); | |
std::vector<T> result = ConsumeBytes<T>(num_bytes + 1, num_bytes); | |
result.back() = terminator; | |
return result; | |
} | |
// Returns a std::vector containing all remaining bytes of the input data. | |
template<typename T> | |
std::vector<T> FuzzedDataProvider::ConsumeRemainingBytes() | |
{ | |
return ConsumeBytes<T>(remaining_bytes_); | |
} | |
// Returns a std::string containing |num_bytes| of input data. Using this and | |
// |.c_str()| on the resulting string is the best way to get an immutable | |
// null-terminated C string. If fewer than |num_bytes| of data remain, returns | |
// a shorter std::string containing all of the data that's left. | |
inline std::string FuzzedDataProvider::ConsumeBytesAsString(size_t num_bytes) | |
{ | |
static_assert(sizeof(std::string::value_type) == sizeof(uint8_t), "ConsumeBytesAsString cannot convert the data to a string."); | |
num_bytes = std::min(num_bytes, remaining_bytes_); | |
std::string result(reinterpret_cast<const std::string::value_type *>(data_ptr_), num_bytes); | |
Advance(num_bytes); | |
return result; | |
} | |
// Returns a std::string of length from 0 to |max_length|. When it runs out of | |
// input data, returns what remains of the input. Designed to be more stable | |
// with respect to a fuzzer inserting characters than just picking a random | |
// length and then consuming that many bytes with |ConsumeBytes|. | |
inline std::string FuzzedDataProvider::ConsumeRandomLengthString(size_t max_length) | |
{ | |
// Reads bytes from the start of |data_ptr_|. Maps "\\" to "\", and maps "\" | |
// followed by anything else to the end of the string. As a result of this | |
// logic, a fuzzer can insert characters into the string, and the string | |
// will be lengthened to include those new characters, resulting in a more | |
// stable fuzzer than picking the length of a string independently from | |
// picking its contents. | |
std::string result; | |
// Reserve the anticipated capaticity to prevent several reallocations. | |
result.reserve(std::min(max_length, remaining_bytes_)); | |
for (size_t i = 0; i < max_length && remaining_bytes_ != 0; ++i) { | |
char next = ConvertUnsignedToSigned<char>(data_ptr_[0]); | |
Advance(1); | |
if (next == '\\' && remaining_bytes_ != 0) { | |
next = ConvertUnsignedToSigned<char>(data_ptr_[0]); | |
Advance(1); | |
if (next != '\\') | |
break; | |
} | |
result += next; | |
} | |
result.shrink_to_fit(); | |
return result; | |
} | |
// Returns a std::string of length from 0 to |remaining_bytes_|. | |
inline std::string FuzzedDataProvider::ConsumeRandomLengthString() | |
{ | |
return ConsumeRandomLengthString(remaining_bytes_); | |
} | |
// Returns a std::string containing all remaining bytes of the input data. | |
// Prefer using |ConsumeRemainingBytes| unless you actually need a std::string | |
// object. | |
inline std::string FuzzedDataProvider::ConsumeRemainingBytesAsString() | |
{ | |
return ConsumeBytesAsString(remaining_bytes_); | |
} | |
// Returns a number in the range [Type's min, Type's max]. The value might | |
// not be uniformly distributed in the given range. If there's no input data | |
// left, always returns |min|. | |
template<typename T> | |
T FuzzedDataProvider::ConsumeIntegral() | |
{ | |
return ConsumeIntegralInRange(std::numeric_limits<T>::min(), std::numeric_limits<T>::max()); | |
} | |
// Returns a number in the range [min, max] by consuming bytes from the | |
// input data. The value might not be uniformly distributed in the given | |
// range. If there's no input data left, always returns |min|. |min| must | |
// be less than or equal to |max|. | |
template<typename T> | |
T FuzzedDataProvider::ConsumeIntegralInRange(T min, T max) | |
{ | |
static_assert(std::is_integral<T>::value, "An integral type is required."); | |
static_assert(sizeof(T) <= sizeof(uint64_t), "Unsupported integral type."); | |
if (min > max) | |
abort(); | |
// Use the biggest type possible to hold the range and the result. | |
uint64_t range = static_cast<uint64_t>(max) - min; | |
uint64_t result = 0; | |
size_t offset = 0; | |
while (offset < sizeof(T) * CHAR_BIT && (range >> offset) > 0 && remaining_bytes_ != 0) { | |
// Pull bytes off the end of the seed data. Experimentally, this seems to | |
// allow the fuzzer to more easily explore the input space. This makes | |
// sense, since it works by modifying inputs that caused new code to run, | |
// and this data is often used to encode length of data read by | |
// |ConsumeBytes|. Separating out read lengths makes it easier modify the | |
// contents of the data that is actually read. | |
--remaining_bytes_; | |
result = (result << CHAR_BIT) | data_ptr_[remaining_bytes_]; | |
offset += CHAR_BIT; | |
} | |
// Avoid division by 0, in case |range + 1| results in overflow. | |
if (range != std::numeric_limits<decltype(range)>::max()) | |
result = result % (range + 1); | |
return static_cast<T>(min + result); | |
} | |
// Returns a floating point value in the range [Type's lowest, Type's max] by | |
// consuming bytes from the input data. If there's no input data left, always | |
// returns approximately 0. | |
template<typename T> | |
T FuzzedDataProvider::ConsumeFloatingPoint() | |
{ | |
return ConsumeFloatingPointInRange<T>(std::numeric_limits<T>::lowest(), std::numeric_limits<T>::max()); | |
} | |
// Returns a floating point value in the given range by consuming bytes from | |
// the input data. If there's no input data left, returns |min|. Note that | |
// |min| must be less than or equal to |max|. | |
template<typename T> | |
T FuzzedDataProvider::ConsumeFloatingPointInRange(T min, T max) | |
{ | |
if (min > max) | |
abort(); | |
T range = .0; | |
T result = min; | |
constexpr T zero(.0); | |
if (max > zero && min < zero && max > min + std::numeric_limits<T>::max()) { | |
// The diff |max - min| would overflow the given floating point type. Use | |
// the half of the diff as the range and consume a bool to decide whether | |
// the result is in the first of the second part of the diff. | |
range = (max / 2.0) - (min / 2.0); | |
if (ConsumeBool()) { | |
result += range; | |
} | |
} else { | |
range = max - min; | |
} | |
return result + range * ConsumeProbability<T>(); | |
} | |
// Returns a floating point number in the range [0.0, 1.0]. If there's no | |
// input data left, always returns 0. | |
template<typename T> | |
T FuzzedDataProvider::ConsumeProbability() | |
{ | |
static_assert(std::is_floating_point<T>::value, "A floating point type is required."); | |
// Use different integral types for different floating point types in order | |
// to provide better density of the resulting values. | |
using IntegralType = typename std::conditional<(sizeof(T) <= sizeof(uint32_t)), uint32_t, uint64_t>::type; | |
T result = static_cast<T>(ConsumeIntegral<IntegralType>()); | |
result /= static_cast<T>(std::numeric_limits<IntegralType>::max()); | |
return result; | |
} | |
// Reads one byte and returns a bool, or false when no data remains. | |
inline bool FuzzedDataProvider::ConsumeBool() | |
{ | |
return 1 & ConsumeIntegral<uint8_t>(); | |
} | |
// Returns an enum value. The enum must start at 0 and be contiguous. It must | |
// also contain |kMaxValue| aliased to its largest (inclusive) value. Such as: | |
// enum class Foo { SomeValue, OtherValue, kMaxValue = OtherValue }; | |
template<typename T> | |
T FuzzedDataProvider::ConsumeEnum() | |
{ | |
static_assert(std::is_enum<T>::value, "|T| must be an enum type."); | |
return static_cast<T>(ConsumeIntegralInRange<uint32_t>(0, static_cast<uint32_t>(T::kMaxValue))); | |
} | |
// Returns a copy of the value selected from the given fixed-size |array|. | |
template<typename T, size_t size> | |
T FuzzedDataProvider::PickValueInArray(const T (&array)[size]) | |
{ | |
static_assert(size > 0, "The array must be non empty."); | |
return array[ConsumeIntegralInRange<size_t>(0, size - 1)]; | |
} | |
template<typename T> | |
T FuzzedDataProvider::PickValueInArray(std::initializer_list<const T> list) | |
{ | |
// TODO(Dor1s): switch to static_assert once C++14 is allowed. | |
if (!list.size()) | |
abort(); | |
return *(list.begin() + ConsumeIntegralInRange<size_t>(0, list.size() - 1)); | |
} | |
// Writes |num_bytes| of input data to the given destination pointer. If there | |
// is not enough data left, writes all remaining bytes. Return value is the | |
// number of bytes written. | |
// In general, it's better to avoid using this function, but it may be useful | |
// in cases when it's necessary to fill a certain buffer or object with | |
// fuzzing data. | |
inline size_t FuzzedDataProvider::ConsumeData(void *destination, size_t num_bytes) | |
{ | |
num_bytes = std::min(num_bytes, remaining_bytes_); | |
CopyAndAdvance(destination, num_bytes); | |
return num_bytes; | |
} | |
// Private methods. | |
inline void FuzzedDataProvider::CopyAndAdvance(void *destination, size_t num_bytes) | |
{ | |
std::memcpy(destination, data_ptr_, num_bytes); | |
Advance(num_bytes); | |
} | |
inline void FuzzedDataProvider::Advance(size_t num_bytes) | |
{ | |
if (num_bytes > remaining_bytes_) | |
abort(); | |
data_ptr_ += num_bytes; | |
remaining_bytes_ -= num_bytes; | |
} | |
template<typename T> | |
std::vector<T> FuzzedDataProvider::ConsumeBytes(size_t size, size_t num_bytes) | |
{ | |
static_assert(sizeof(T) == sizeof(uint8_t), "Incompatible data type."); | |
// The point of using the size-based constructor below is to increase the | |
// odds of having a vector object with capacity being equal to the length. | |
// That part is always implementation specific, but at least both libc++ and | |
// libstdc++ allocate the requested number of bytes in that constructor, | |
// which seems to be a natural choice for other implementations as well. | |
// To increase the odds even more, we also call |shrink_to_fit| below. | |
std::vector<T> result(size); | |
if (size == 0) { | |
if (num_bytes != 0) | |
abort(); | |
return result; | |
} | |
CopyAndAdvance(result.data(), num_bytes); | |
// Even though |shrink_to_fit| is also implementation specific, we expect it | |
// to provide an additional assurance in case vector's constructor allocated | |
// a buffer which is larger than the actual amount of data we put inside it. | |
result.shrink_to_fit(); | |
return result; | |
} | |
template<typename TS, typename TU> | |
TS FuzzedDataProvider::ConvertUnsignedToSigned(TU value) | |
{ | |
static_assert(sizeof(TS) == sizeof(TU), "Incompatible data types."); | |
static_assert(!std::numeric_limits<TU>::is_signed, "Source type must be unsigned."); | |
// TODO(Dor1s): change to `if constexpr` once C++17 becomes mainstream. | |
if (std::numeric_limits<TS>::is_modulo) | |
return static_cast<TS>(value); | |
// Avoid using implementation-defined unsigned to signed conversions. | |
// To learn more, see https://stackoverflow.com/questions/13150449. | |
if (value <= std::numeric_limits<TS>::max()) { | |
return static_cast<TS>(value); | |
} else { | |
constexpr auto TS_min = std::numeric_limits<TS>::min(); | |
return TS_min + static_cast<char>(value - TS_min); | |
} | |
} | |