Spaces:
Sleeping
Sleeping
Update main.py
Browse files
main.py
CHANGED
@@ -1,189 +1,364 @@
|
|
1 |
from flask import Flask, request, jsonify, render_template, Response
|
2 |
-
|
3 |
import requests
|
4 |
import json
|
5 |
-
import
|
6 |
-
|
7 |
-
from chromadb import Chroma
|
8 |
-
from chromadb.api.types import Documents, Embeddings
|
9 |
-
from chromadb.api import EmbeddingFunction
|
10 |
import random
|
11 |
-
|
12 |
-
|
|
|
|
|
13 |
|
14 |
app = Flask(__name__)
|
15 |
CORS(app)
|
16 |
|
17 |
-
|
18 |
-
# Custom embedding function for ChromaDB
|
19 |
class MyEmbeddingFunction(EmbeddingFunction):
|
20 |
-
def __init__(self):
|
21 |
-
self.api_url = "https://api-inference.huggingface.co/models/BAAI/bge-large-en-v1.5"
|
22 |
-
self.headers = {
|
23 |
-
'accept': '*/*',
|
24 |
-
'content-type': 'application/json',
|
25 |
-
'user-agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/131.0.0.0 Safari/537.36',
|
26 |
-
}
|
27 |
-
|
28 |
def embed_documents(self, input: Documents) -> Embeddings:
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
try:
|
51 |
custom_embeddings = MyEmbeddingFunction()
|
52 |
db = Chroma(embedding_function=custom_embeddings)
|
53 |
|
|
|
54 |
def load_documents_from_sqlite(db_path="chroma.sqlite3"):
|
55 |
conn = sqlite3.connect(db_path)
|
56 |
cursor = conn.cursor()
|
57 |
-
|
|
|
58 |
cursor.execute("SELECT id, content, embedding FROM documents")
|
59 |
rows = cursor.fetchall()
|
60 |
-
|
61 |
collection = db.get_or_create_collection("default_collection")
|
|
|
62 |
for row in rows:
|
63 |
doc_id = row[0]
|
64 |
content = row[1]
|
65 |
-
embedding = json.loads(row[2]) #
|
66 |
-
collection.add(
|
67 |
-
|
|
|
|
|
|
|
|
|
68 |
conn.close()
|
69 |
-
print("
|
|
|
|
|
70 |
|
71 |
-
load_documents_from_sqlite()
|
72 |
except Exception as e:
|
73 |
print("Error initializing database:", str(e))
|
74 |
|
75 |
|
76 |
-
|
77 |
-
|
78 |
-
try:
|
79 |
-
return custom_embeddings.embed_query(query)
|
80 |
-
except Exception as e:
|
81 |
-
print("Error generating embedding:", str(e))
|
82 |
-
return []
|
83 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
|
85 |
-
# Rank strings based on similarity
|
86 |
-
def strings_ranked_by_relatedness(query: str, df, top_n=5):
|
87 |
-
def relatedness_fn(x, y):
|
88 |
-
return np.dot(x, y) / (np.linalg.norm(x) * np.linalg.norm(y))
|
89 |
|
90 |
-
|
91 |
-
|
92 |
-
|
|
|
|
|
93 |
|
94 |
-
|
|
|
|
|
95 |
(row["text"], relatedness_fn(query_embedding, row["embedding"])) for row in df
|
96 |
]
|
97 |
-
|
98 |
-
|
99 |
-
strings, relatednesses = zip(*strings_and_relatedness)
|
100 |
return strings[:top_n], relatednesses[:top_n]
|
101 |
|
102 |
|
103 |
-
@app.route("/", methods=["GET"])
|
104 |
-
def
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
def
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
114 |
url = "https://api.deepinfra.com/v1/openai/chat/completions"
|
|
|
115 |
payload = json.dumps({
|
116 |
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
|
117 |
-
"messages":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
118 |
"stream": True,
|
119 |
"max_tokens": 1024,
|
120 |
})
|
121 |
headers = {
|
|
|
|
|
122 |
'Content-Type': 'application/json',
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
123 |
'accept': 'text/event-stream',
|
|
|
|
|
|
|
124 |
}
|
125 |
|
126 |
-
response = requests.
|
|
|
127 |
for line in response.iter_lines(decode_unicode=True):
|
128 |
if line:
|
129 |
-
|
|
|
|
|
|
|
|
|
|
|
130 |
|
131 |
-
|
132 |
|
133 |
|
134 |
-
@app.route("/api/getContext", methods=["POST"])
|
135 |
-
def get_context():
|
136 |
-
question = request.form.get("question")
|
137 |
-
try:
|
138 |
-
results = db.similarity_search_with_score(question, k=5)
|
139 |
-
context = "\n\n---\n\n".join([doc.page_content for doc, _ in results])
|
140 |
-
sources = [doc.metadata.get("id") for doc, _ in results]
|
141 |
-
return jsonify({"context": context, "sources": sources})
|
142 |
-
except Exception as e:
|
143 |
-
return jsonify({"context": [], "sources": [], "error": str(e)})
|
144 |
|
|
|
|
|
|
|
145 |
|
146 |
-
@app.route("/api/voice", methods=["POST"])
|
147 |
-
def voice_gen():
|
148 |
-
text = request.form.get("text")
|
149 |
-
url = "https://texttospeech.googleapis.com/v1beta1/text:synthesize?alt=json&key=YOUR_GOOGLE_API_KEY"
|
150 |
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
155 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
156 |
try:
|
157 |
-
|
158 |
-
|
159 |
-
|
|
|
|
|
|
|
160 |
except Exception as e:
|
161 |
-
return jsonify({"error":
|
162 |
|
163 |
|
164 |
@app.route("/api/audioGenerate", methods=["POST"])
|
165 |
-
def
|
166 |
-
answer = request.form
|
167 |
-
|
168 |
-
|
169 |
-
for sentence in answer.split("\n"):
|
170 |
url = "https://deepgram.com/api/ttsAudioGeneration"
|
171 |
-
|
172 |
-
|
|
|
173 |
"model": "aura-asteria-en",
|
|
|
174 |
"params": "tag=landingpage-product-texttospeech"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
175 |
}
|
176 |
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
audio_responses.append(response.json().get("data"))
|
181 |
-
except Exception as e:
|
182 |
-
print(f"Error generating audio for '{sentence}': {str(e)}")
|
183 |
-
continue
|
184 |
-
|
185 |
-
return jsonify({"audio": audio_responses})
|
186 |
|
187 |
|
188 |
if __name__ == "__main__":
|
|
|
|
|
|
|
189 |
serve(app, host="0.0.0.0", port=7860)
|
|
|
1 |
from flask import Flask, request, jsonify, render_template, Response
|
2 |
+
import os
|
3 |
import requests
|
4 |
import json
|
5 |
+
from scipy import spatial
|
6 |
+
from flask_cors import CORS
|
|
|
|
|
|
|
7 |
import random
|
8 |
+
import numpy as np
|
9 |
+
from langchain_chroma import Chroma
|
10 |
+
from chromadb import Documents, EmbeddingFunction, Embeddings, Collection
|
11 |
+
import sqlite3
|
12 |
|
13 |
app = Flask(__name__)
|
14 |
CORS(app)
|
15 |
|
|
|
|
|
16 |
class MyEmbeddingFunction(EmbeddingFunction):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
def embed_documents(self, input: Documents) -> Embeddings:
|
18 |
+
for i in range(5):
|
19 |
+
try:
|
20 |
+
embeddings = []
|
21 |
+
url = "https://api-inference.huggingface.co/models/BAAI/bge-large-en-v1.5"
|
22 |
+
|
23 |
+
payload = {
|
24 |
+
"inputs": input
|
25 |
+
}
|
26 |
+
headers = {
|
27 |
+
'accept': '*/*',
|
28 |
+
'accept-language': 'en-US,en;q=0.9',
|
29 |
+
'content-type': 'application/json',
|
30 |
+
'origin': 'https://huggingface.co',
|
31 |
+
'priority': 'u=1, i',
|
32 |
+
'referer': 'https://huggingface.co/',
|
33 |
+
'sec-ch-ua': '"Google Chrome";v="131", "Chromium";v="131", "Not_A Brand";v="24"',
|
34 |
+
'sec-ch-ua-mobile': '?0',
|
35 |
+
'sec-ch-ua-platform': '"Windows"',
|
36 |
+
'sec-fetch-dest': 'empty',
|
37 |
+
'sec-fetch-mode': 'cors',
|
38 |
+
'sec-fetch-site': 'same-site',
|
39 |
+
'user-agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/131.0.0.0 Safari/537.36',
|
40 |
+
}
|
41 |
+
|
42 |
+
response = requests.post(url, headers=headers, json=payload)
|
43 |
+
return response.json()[0][0]
|
44 |
+
except:
|
45 |
+
pass
|
46 |
+
|
47 |
+
def embed_query(self, input: Documents) -> Embeddings:
|
48 |
+
for i in range(5):
|
49 |
+
try:
|
50 |
+
embeddings = []
|
51 |
+
url = "https://api-inference.huggingface.co/models/BAAI/bge-large-en-v1.5"
|
52 |
+
|
53 |
+
payload = {
|
54 |
+
"inputs": [input]
|
55 |
+
}
|
56 |
+
headers = {
|
57 |
+
'accept': '*/*',
|
58 |
+
'accept-language': 'en-US,en;q=0.9',
|
59 |
+
'content-type': 'application/json',
|
60 |
+
'origin': 'https://huggingface.co',
|
61 |
+
'priority': 'u=1, i',
|
62 |
+
'referer': 'https://huggingface.co/',
|
63 |
+
'sec-ch-ua': '"Google Chrome";v="131", "Chromium";v="131", "Not_A Brand";v="24"',
|
64 |
+
'sec-ch-ua-mobile': '?0',
|
65 |
+
'sec-ch-ua-platform': '"Windows"',
|
66 |
+
'sec-fetch-dest': 'empty',
|
67 |
+
'sec-fetch-mode': 'cors',
|
68 |
+
'sec-fetch-site': 'same-site',
|
69 |
+
'user-agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/131.0.0.0 Safari/537.36',
|
70 |
+
}
|
71 |
+
|
72 |
+
response = requests.post(url, headers=headers, json=payload)
|
73 |
+
return response.json()[0][0]
|
74 |
+
except Exception as e:
|
75 |
+
print("Error in Embeding :",str(e))
|
76 |
+
|
77 |
+
# try:
|
78 |
+
# CHROMA_PATH = "chroma"
|
79 |
+
# custom_embeddings = MyEmbeddingFunction()
|
80 |
+
# db = Chroma(
|
81 |
+
# persist_directory=CHROMA_PATH,embedding_function=custom_embeddings
|
82 |
+
# )
|
83 |
+
# #
|
84 |
+
# except Exception as e:
|
85 |
+
# print("Error in database :",str(e))
|
86 |
+
|
87 |
+
# Initialize the database without persist_directory
|
88 |
try:
|
89 |
custom_embeddings = MyEmbeddingFunction()
|
90 |
db = Chroma(embedding_function=custom_embeddings)
|
91 |
|
92 |
+
# Load documents from chroma.sqlite3
|
93 |
def load_documents_from_sqlite(db_path="chroma.sqlite3"):
|
94 |
conn = sqlite3.connect(db_path)
|
95 |
cursor = conn.cursor()
|
96 |
+
|
97 |
+
# Assuming your table structure has "id", "content", and "embedding"
|
98 |
cursor.execute("SELECT id, content, embedding FROM documents")
|
99 |
rows = cursor.fetchall()
|
100 |
+
|
101 |
collection = db.get_or_create_collection("default_collection")
|
102 |
+
|
103 |
for row in rows:
|
104 |
doc_id = row[0]
|
105 |
content = row[1]
|
106 |
+
embedding = json.loads(row[2]) # If embeddings are stored as JSON strings
|
107 |
+
collection.add(
|
108 |
+
ids=[doc_id],
|
109 |
+
documents=[content],
|
110 |
+
embeddings=[embedding]
|
111 |
+
)
|
112 |
+
|
113 |
conn.close()
|
114 |
+
print("Loaded documents into Chroma.")
|
115 |
+
|
116 |
+
load_documents_from_sqlite() # Call to load data
|
117 |
|
|
|
118 |
except Exception as e:
|
119 |
print("Error initializing database:", str(e))
|
120 |
|
121 |
|
122 |
+
def embeddingGen(query):
|
123 |
+
url = "https://api-inference.huggingface.co/models/BAAI/bge-large-en-v1.5"
|
|
|
|
|
|
|
|
|
|
|
124 |
|
125 |
+
payload = {
|
126 |
+
"inputs": [query]
|
127 |
+
}
|
128 |
+
headers = {
|
129 |
+
'accept': '*/*',
|
130 |
+
'accept-language': 'en-US,en;q=0.9',
|
131 |
+
'content-type': 'application/json',
|
132 |
+
'origin': 'https://huggingface.co',
|
133 |
+
'priority': 'u=1, i',
|
134 |
+
'referer': 'https://huggingface.co/',
|
135 |
+
'sec-ch-ua': '"Google Chrome";v="131", "Chromium";v="131", "Not_A Brand";v="24"',
|
136 |
+
'sec-ch-ua-mobile': '?0',
|
137 |
+
'sec-ch-ua-platform': '"Windows"',
|
138 |
+
'sec-fetch-dest': 'empty',
|
139 |
+
'sec-fetch-mode': 'cors',
|
140 |
+
'sec-fetch-site': 'same-site',
|
141 |
+
'user-agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/131.0.0.0 Safari/537.36',
|
142 |
+
}
|
143 |
+
|
144 |
+
response = requests.post(url, headers=headers, json=payload)
|
145 |
+
return response.json()[0][0]
|
146 |
|
|
|
|
|
|
|
|
|
147 |
|
148 |
+
def strings_ranked_by_relatedness(query, df, top_n=5):
|
149 |
+
def relatedness_fn(x, y):
|
150 |
+
x_norm = np.linalg.norm(x)
|
151 |
+
y_norm = np.linalg.norm(y)
|
152 |
+
return np.dot(x, y) / (x_norm * y_norm)
|
153 |
|
154 |
+
query_embedding_response = embeddingGen(query)
|
155 |
+
query_embedding = query_embedding_response
|
156 |
+
strings_and_relatednesses = [
|
157 |
(row["text"], relatedness_fn(query_embedding, row["embedding"])) for row in df
|
158 |
]
|
159 |
+
strings_and_relatednesses.sort(key=lambda x: x[1], reverse=True)
|
160 |
+
strings, relatednesses = zip(*strings_and_relatednesses)
|
|
|
161 |
return strings[:top_n], relatednesses[:top_n]
|
162 |
|
163 |
|
164 |
+
@app.route("/api/gpt", methods=["POST", "GET"])
|
165 |
+
def gptRes():
|
166 |
+
if request.method == 'POST':
|
167 |
+
data = request.get_json()
|
168 |
+
messages = data["messages"]
|
169 |
+
|
170 |
+
def inference():
|
171 |
+
url = "https://api.deepinfra.com/v1/openai/chat/completions"
|
172 |
+
|
173 |
+
payload = json.dumps({
|
174 |
+
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
|
175 |
+
"messages": messages,
|
176 |
+
"stream": True,
|
177 |
+
"max_tokens": 1024,
|
178 |
+
})
|
179 |
+
headers = {
|
180 |
+
'Accept-Language': 'en-US,en;q=0.9,gu;q=0.8,ru;q=0.7,hi;q=0.6',
|
181 |
+
'Connection': 'keep-alive',
|
182 |
+
'Content-Type': 'application/json',
|
183 |
+
'Origin': 'https://deepinfra.com',
|
184 |
+
'Referer': 'https://deepinfra.com/',
|
185 |
+
'Sec-Fetch-Dest': 'empty',
|
186 |
+
'Sec-Fetch-Mode': 'cors',
|
187 |
+
'Sec-Fetch-Site': 'same-site',
|
188 |
+
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/127.0.0.0 Safari/537.36',
|
189 |
+
'X-Deepinfra-Source': 'web-page',
|
190 |
+
'accept': 'text/event-stream',
|
191 |
+
'sec-ch-ua': '"Not)A;Brand";v="99", "Google Chrome";v="127", "Chromium";v="127"',
|
192 |
+
'sec-ch-ua-mobile': '?0',
|
193 |
+
'sec-ch-ua-platform': '"Windows"'
|
194 |
+
}
|
195 |
+
|
196 |
+
response = requests.request("POST", url, headers=headers, data=payload, stream=True)
|
197 |
+
|
198 |
+
for line in response.iter_lines(decode_unicode=True):
|
199 |
+
if line:
|
200 |
+
# try:
|
201 |
+
# line = line.split("data:")[1]
|
202 |
+
# line = json.loads(line)
|
203 |
+
# yield line["choices"][0]["delta"]["content"]
|
204 |
+
# except:
|
205 |
+
# yield ""
|
206 |
+
yield line
|
207 |
+
|
208 |
+
return Response(inference(), content_type='text/event-stream')
|
209 |
+
else:
|
210 |
+
query = request.args.get('query')
|
211 |
+
system = request.args.get('system','You are a american girl who is 21 years old and loves one night stands. Keep your ton very sexual and hot. Never ever mention you as an AI. Your name is Sofia and you are a american woo girl. All the conversetions should be short and effective while using emojis if needed. You love to talk about adult stories and situation with others.')
|
212 |
url = "https://api.deepinfra.com/v1/openai/chat/completions"
|
213 |
+
|
214 |
payload = json.dumps({
|
215 |
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
|
216 |
+
"messages": [
|
217 |
+
{
|
218 |
+
"role": "system",
|
219 |
+
"content": system
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"role": "user",
|
223 |
+
"content": query
|
224 |
+
}
|
225 |
+
],
|
226 |
"stream": True,
|
227 |
"max_tokens": 1024,
|
228 |
})
|
229 |
headers = {
|
230 |
+
'Accept-Language': 'en-US,en;q=0.9,gu;q=0.8,ru;q=0.7,hi;q=0.6',
|
231 |
+
'Connection': 'keep-alive',
|
232 |
'Content-Type': 'application/json',
|
233 |
+
'Origin': 'https://deepinfra.com',
|
234 |
+
'Referer': 'https://deepinfra.com/',
|
235 |
+
'Sec-Fetch-Dest': 'empty',
|
236 |
+
'Sec-Fetch-Mode': 'cors',
|
237 |
+
'Sec-Fetch-Site': 'same-site',
|
238 |
+
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/127.0.0.0 Safari/537.36',
|
239 |
+
'X-Deepinfra-Source': 'web-page',
|
240 |
'accept': 'text/event-stream',
|
241 |
+
'sec-ch-ua': '"Not)A;Brand";v="99", "Google Chrome";v="127", "Chromium";v="127"',
|
242 |
+
'sec-ch-ua-mobile': '?0',
|
243 |
+
'sec-ch-ua-platform': '"Windows"'
|
244 |
}
|
245 |
|
246 |
+
response = requests.request("POST", url, headers=headers, data=payload, stream=True)
|
247 |
+
output = ""
|
248 |
for line in response.iter_lines(decode_unicode=True):
|
249 |
if line:
|
250 |
+
try:
|
251 |
+
line = line.split("data:")[1]
|
252 |
+
line = json.loads(line)
|
253 |
+
output = output + line["choices"][0]["delta"]["content"]
|
254 |
+
except:
|
255 |
+
output = output + ""
|
256 |
|
257 |
+
return jsonify({"response": output})
|
258 |
|
259 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
260 |
|
261 |
+
@app.route("/", methods=["GET"])
|
262 |
+
def index():
|
263 |
+
return render_template("index.html")
|
264 |
|
|
|
|
|
|
|
|
|
265 |
|
266 |
+
@app.route("/api/getAPI", methods=["POST"])
|
267 |
+
def getAPI():
|
268 |
+
return jsonify({"API": random.choice(apiKeys)})
|
269 |
+
|
270 |
+
@app.route("/api/voice", methods=["POST"])
|
271 |
+
def VoiceGen():
|
272 |
+
text = request.form["text"]
|
273 |
+
url = "https://texttospeech.googleapis.com/v1beta1/text:synthesize?alt=json&key=AIzaSyBeo4NGA__U6Xxy-aBE6yFm19pgq8TY-TM"
|
274 |
+
|
275 |
+
payload = json.dumps({
|
276 |
+
"input":{
|
277 |
+
"text":text
|
278 |
+
},
|
279 |
+
"voice":{
|
280 |
+
"languageCode":"en-US",
|
281 |
+
"name":"en-US-Studio-Q"
|
282 |
+
},
|
283 |
+
"audioConfig":{
|
284 |
+
"audioEncoding":"LINEAR16",
|
285 |
+
"pitch":0,
|
286 |
+
"speakingRate":1,
|
287 |
+
"effectsProfileId":[
|
288 |
+
"telephony-class-application"
|
289 |
+
]
|
290 |
+
}
|
291 |
+
})
|
292 |
+
headers = {
|
293 |
+
'sec-ch-ua': '"Google Chrome";v="123" "Not:A-Brand";v="8" "Chromium";v="123"',
|
294 |
+
'X-Goog-Encode-Response-If-Executable': 'base64',
|
295 |
+
'X-Origin': 'https://explorer.apis.google.com',
|
296 |
+
'sec-ch-ua-mobile': '?0',
|
297 |
+
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML like Gecko) Chrome/123.0.0.0 Safari/537.36',
|
298 |
+
'Content-Type': 'application/json',
|
299 |
+
'X-Requested-With': 'XMLHttpRequest',
|
300 |
+
'X-JavaScript-User-Agent': 'apix/3.0.0 google-api-javascript-client/1.1.0',
|
301 |
+
'X-Referer': 'https://explorer.apis.google.com',
|
302 |
+
'sec-ch-ua-platform': '"Windows"',
|
303 |
+
'Accept': '*/*',
|
304 |
+
'Sec-Fetch-Site': 'same-origin',
|
305 |
+
'Sec-Fetch-Mode': 'cors',
|
306 |
+
'Sec-Fetch-Dest': 'empty'
|
307 |
}
|
308 |
+
|
309 |
+
response = requests.request("POST", url, headers=headers, data=payload)
|
310 |
+
return jsonify({"audio": response.json()["audioContent"]})
|
311 |
+
|
312 |
+
|
313 |
+
@app.route("/api/getContext", methods=["POST"])
|
314 |
+
def getContext():
|
315 |
try:
|
316 |
+
global db
|
317 |
+
question = request.form["question"]
|
318 |
+
results = db.similarity_search_with_score(question, k=5)
|
319 |
+
context = "\n\n---\n\n".join([doc.page_content for doc, _score in results])
|
320 |
+
sources = [doc.metadata.get("id", None) for doc, _score in results]
|
321 |
+
return jsonify({"context": context, "sources": sources})
|
322 |
except Exception as e:
|
323 |
+
return jsonify({"context": [], "sources": [],"error":str(e)})
|
324 |
|
325 |
|
326 |
@app.route("/api/audioGenerate", methods=["POST"])
|
327 |
+
def audioGenerate():
|
328 |
+
answer = request.form["answer"]
|
329 |
+
audio = []
|
330 |
+
for i in answer.split("\n"):
|
|
|
331 |
url = "https://deepgram.com/api/ttsAudioGeneration"
|
332 |
+
|
333 |
+
payload = json.dumps({
|
334 |
+
"text": i,
|
335 |
"model": "aura-asteria-en",
|
336 |
+
"demoType": "landing-page",
|
337 |
"params": "tag=landingpage-product-texttospeech"
|
338 |
+
})
|
339 |
+
headers = {
|
340 |
+
'accept': '*/*',
|
341 |
+
'accept-language': 'en-US,en;q=0.9,gu;q=0.8,ru;q=0.7,hi;q=0.6',
|
342 |
+
'content-type': 'application/json',
|
343 |
+
'origin': 'https://deepgram.com',
|
344 |
+
'priority': 'u=1, i',
|
345 |
+
'referer': 'https://deepgram.com/',
|
346 |
+
'sec-ch-ua': '"Not/A)Brand";v="8", "Chromium";v="126", "Google Chrome";v="126"',
|
347 |
+
'sec-ch-ua-mobile': '?0',
|
348 |
+
'sec-ch-ua-platform': '"Windows"',
|
349 |
+
'sec-fetch-dest': 'empty',
|
350 |
+
'sec-fetch-mode': 'cors',
|
351 |
+
'sec-fetch-site': 'same-origin',
|
352 |
+
'user-agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36'
|
353 |
}
|
354 |
|
355 |
+
response = requests.request("POST", url, headers=headers, data=payload)
|
356 |
+
audio.append(response.json()["data"])
|
357 |
+
return jsonify({"audio": audio})
|
|
|
|
|
|
|
|
|
|
|
|
|
358 |
|
359 |
|
360 |
if __name__ == "__main__":
|
361 |
+
# app.run(debug=True)
|
362 |
+
from waitress import serve
|
363 |
+
|
364 |
serve(app, host="0.0.0.0", port=7860)
|