Spaces:
Sleeping
Sleeping
File size: 16,814 Bytes
e6ec5b6 e2928bf e93b0ba e2928bf 43037cf e6ec5b6 43037cf e2928bf e93b0ba e2928bf e93b0ba e6ec5b6 43037cf e6ec5b6 e2928bf e6ec5b6 e2928bf e93b0ba e2928bf e93b0ba 067985f e93b0ba e2928bf e93b0ba e2928bf 7c42209 e6ec5b6 7c42209 e6ec5b6 e2928bf 7c42209 e6ec5b6 e2928bf e6ec5b6 e2928bf e6ec5b6 e2928bf 43037cf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 |
import time
from itertools import count, islice
from functools import partial
from typing import Iterable, Iterator, TypeVar
import gradio as gr
import requests.exceptions
from huggingface_hub import InferenceClient
model_id = "microsoft/Phi-3-mini-4k-instruct"
client = InferenceClient(model_id)
MAX_TOTAL_NB_ITEMS = 100 # almost infinite, don't judge me (actually it's because gradio needs a fixed number of components)
MAX_NB_ITEMS_PER_GENERATION_CALL = 10
GENERATE_DATASET_NAMES_FOR_SEARCH_QUERY = (
"A Machine Learning Practioner is looking for a dataset that matches '{search_query}'. "
f"Generate a list of {MAX_NB_ITEMS_PER_GENERATION_CALL} names of quality dataset that don't exist but sound plausible and would "
"be helpful. Feel free to reuse words from the query '{search_query}' to name the datasets. "
"Every dataset should be about '{search_query}' and have descriptive tags/keywords including the ML task name associated to the dataset (classification, regression, anomaly detection, etc.). Use the following format:\n1. DatasetName1 (tag1, tag2, tag3)\n1. DatasetName2 (tag1, tag2, tag3)"
)
GENERATE_DATASET_CONTENT_FOR_SEARCH_QUERY_AND_NAME_AND_TAGS = (
"A ML practitioner is looking for a dataset CSV after the query '{search_query}'. "
"Generate the first 5 rows of a plausible and quality CSV for the dataset '{dataset_name}'. "
"You can get inspiration from related keywords '{tags}' but most importantly the dataset should correspond to the query '{search_query}'. "
"Focus on quality text content and and use a 'label' or 'labels' column if it makes sense (invent labels, avoid reusing the keywords, be accurate while labelling texts). "
"Reply using a short description of the dataset with title **Dataset Description:** followed by the CSV content in a code block and with title **CSV Content Preview:**."
)
landing_page_query = "various datasets on many different subjects and topics, from classification to language modeling, from science to sport to finance to news"
landing_page_datasets_generated_text = """
1. NewsEventsPredict (classification, media, trend)
2. FinancialForecast (economy, stocks, regression)
3. HealthMonitor (science, real-time, anomaly detection)
4. SportsAnalysis (classification, performance, player tracking)
5. SciLiteracyTools (language modeling, science literacy, text classification)
6. RetailSalesAnalyzer (consumer behavior, sales trend, segmentation)
7. SocialSentimentEcho (social media, emotion analysis, clustering)
8. NewsEventTracker (classification, public awareness, topical clustering)
9. HealthVitalSigns (anomaly detection, biometrics, prediction)
10. GameStockPredict (classification, finance, sports contingency)
"""
default_output = landing_page_datasets_generated_text.strip().split("\n")
assert len(default_output) == MAX_NB_ITEMS_PER_GENERATION_CALL
css = """
a {
color: var(--body-text-color);
}
.datasetButton {
justify-content: start;
justify-content: left;
}
.tags {
font-size: var(--button-small-text-size);
color: var(--body-text-color-subdued);
}
.topButton {
justify-content: start;
justify-content: left;
text-align: left;
background: transparent;
box-shadow: none;
padding-bottom: 0;
}
.topButton::before {
content: url("data:image/svg+xml,%3Csvg style='color: rgb(209 213 219)' xmlns='http://www.w3.org/2000/svg' xmlns:xlink='http://www.w3.org/1999/xlink' aria-hidden='true' focusable='false' role='img' width='1em' height='1em' preserveAspectRatio='xMidYMid meet' viewBox='0 0 25 25'%3E%3Cellipse cx='12.5' cy='5' fill='currentColor' fill-opacity='0.25' rx='7.5' ry='2'%3E%3C/ellipse%3E%3Cpath d='M12.5 15C16.6421 15 20 14.1046 20 13V20C20 21.1046 16.6421 22 12.5 22C8.35786 22 5 21.1046 5 20V13C5 14.1046 8.35786 15 12.5 15Z' fill='currentColor' opacity='0.5'%3E%3C/path%3E%3Cpath d='M12.5 7C16.6421 7 20 6.10457 20 5V11.5C20 12.6046 16.6421 13.5 12.5 13.5C8.35786 13.5 5 12.6046 5 11.5V5C5 6.10457 8.35786 7 12.5 7Z' fill='currentColor' opacity='0.5'%3E%3C/path%3E%3Cpath d='M5.23628 12C5.08204 12.1598 5 12.8273 5 13C5 14.1046 8.35786 15 12.5 15C16.6421 15 20 14.1046 20 13C20 12.8273 19.918 12.1598 19.7637 12C18.9311 12.8626 15.9947 13.5 12.5 13.5C9.0053 13.5 6.06886 12.8626 5.23628 12Z' fill='currentColor'%3E%3C/path%3E%3C/svg%3E");
margin-right: .25rem;
margin-left: -.125rem;
margin-top: .25rem;
}
.bottomButton {
justify-content: start;
justify-content: left;
text-align: left;
background: transparent;
box-shadow: none;
font-size: var(--button-small-text-size);
color: var(--body-text-color-subdued);
padding-top: 0;
align-items: baseline;
}
.bottomButton::before {
content: 'tags:';
margin-right: .25rem;
}
.buttonsGroup {
background: transparent;
}
.buttonsGroup:hover {
background: var(--input-background-fill);
}
.buttonsGroup div {
background: transparent;
}
.insivibleButtonGroup {
display: none;
}
@keyframes placeHolderShimmer{
0%{
background-position: -468px 0
}
100%{
background-position: 468px 0
}
}
.linear-background {
animation-duration: 1s;
animation-fill-mode: forwards;
animation-iteration-count: infinite;
animation-name: placeHolderShimmer;
animation-timing-function: linear;
background-image: linear-gradient(to right, var(--body-text-color-subdued) 8%, #dddddd11 18%, var(--body-text-color-subdued) 33%);
background-size: 1000px 104px;
color: transparent;
background-clip: text;
}
"""
with gr.Blocks(css=css) as demo:
generated_texts_state = gr.State((landing_page_datasets_generated_text,))
with gr.Row():
with gr.Column(scale=4, min_width=0):
pass
with gr.Column(scale=10):
gr.Markdown(
"# 🤗 Infinite Dataset Hub ♾️\n\n"
"An endless catalog of datasets, created just for you.\n\n"
)
with gr.Column(scale=4, min_width=0):
pass
with gr.Column() as search_page:
with gr.Row():
with gr.Column(scale=4, min_width=0):
pass
with gr.Column(scale=9):
search_bar = gr.Textbox(max_lines=1, placeholder="Search datasets, get infinite results", show_label=False, container=False)
with gr.Column(min_width=64):
search_button = gr.Button("🔍", variant="primary")
with gr.Column(scale=4, min_width=0):
pass
with gr.Row():
with gr.Column(scale=4, min_width=0):
pass
with gr.Column(scale=10):
button_groups: list[gr.Group] = []
buttons: list[gr.Button] = []
for i in range(MAX_TOTAL_NB_ITEMS):
if i < len(default_output):
line = default_output[i]
dataset_name, tags = line.split(".", 1)[1].strip(" )").split(" (", 1)
group_classes = "buttonsGroup"
dataset_name_classes = "topButton"
tags_classes = "bottomButton"
else:
dataset_name, tags = "⬜⬜⬜⬜⬜⬜", "░░░░, ░░░░, ░░░░"
group_classes = "buttonsGroup insivibleButtonGroup"
dataset_name_classes = "topButton linear-background"
tags_classes = "bottomButton linear-background"
with gr.Group(elem_classes=group_classes) as button_group:
button_groups.append(button_group)
buttons.append(gr.Button(dataset_name, elem_classes=dataset_name_classes))
buttons.append(gr.Button(tags, elem_classes=tags_classes))
see_more = gr.Button("See more") # TODO: dosable when reaching end of page
gr.Markdown(f"_powered by [{model_id}](https://huggingface.co/{model_id})_")
with gr.Column(scale=4, min_width=0):
pass
# more.click(search_more_datasets, inputs=[generated_texts, search_bar], outputs=[generated_texts] + buttons)
with gr.Column(visible=False) as dataset_page:
with gr.Row():
with gr.Column(scale=4, min_width=0):
pass
with gr.Column(scale=10):
dataset_title = gr.Markdown()
dataset_content = gr.Markdown()
with gr.Row():
with gr.Column(scale=4, min_width=0):
pass
with gr.Column():
generate_full_dataset_button = gr.Button("Generate Full Dataset", variant="primary") # TODO: implement
back_button = gr.Button("< Back", size="sm")
with gr.Column(scale=4, min_width=0):
pass
with gr.Column(scale=4, min_width=0):
pass
T = TypeVar("T")
def batched(it: Iterable[T], n: int) -> Iterator[list[T]]:
it = iter(it)
while batch := list(islice(it, n)):
yield batch
def stream_reponse(msg: str, generated_texts: tuple[str] = (), max_tokens=500) -> Iterator[str]:
messages = [
{"role": "user", "content": msg}
] + [
item
for generated_text in generated_texts
for item in [
{"role": "assistant", "content": generated_text},
{"role": "user", "content": "Can you generate more ?"},
]
]
for _ in range(3):
try:
for message in client.chat_completion(
messages=messages,
max_tokens=max_tokens,
stream=True,
top_p=0.8,
):
yield message.choices[0].delta.content
except requests.exceptions.ConnectionError as e:
print(e + "\n\nRetrying in 1sec")
time.sleep(1)
continue
break
def gen_datasets_line_by_line(search_query: str, generated_texts: tuple[str] = ()) -> Iterator[str]:
search_query = search_query[:1000] if search_query.strip() else landing_page_query
generated_text = ""
current_line = ""
for token in stream_reponse(
GENERATE_DATASET_NAMES_FOR_SEARCH_QUERY.format(search_query=search_query),
generated_texts=generated_texts,
):
current_line += token
if current_line.endswith("\n"):
yield current_line
generated_text += current_line
current_line = ""
yield current_line
generated_text += current_line
print("-----\n\n" + generated_text)
def gen_dataset_content(search_query: str, dataset_name: str, tags: str) -> Iterator[str]:
search_query = search_query[:1000] if search_query.strip() else landing_page_query
generated_text = ""
for token in stream_reponse(GENERATE_DATASET_CONTENT_FOR_SEARCH_QUERY_AND_NAME_AND_TAGS.format(
search_query=search_query,
dataset_name=dataset_name,
tags=tags,
), max_tokens=1500):
generated_text += token
yield generated_text
print("-----\n\n" + generated_text)
search_datasets_inputs = search_bar
search_datasets_outputs = button_groups + buttons + [generated_texts_state]
def search_datasets(search_query):
yield {generated_texts_state: []}
yield {
button_group: gr.Group(elem_classes="buttonsGroup insivibleButtonGroup")
for button_group in button_groups[MAX_NB_ITEMS_PER_GENERATION_CALL:]
}
yield {
k: v
for dataset_name_button, tags_button in batched(buttons, 2)
for k, v in {
dataset_name_button: gr.Button("⬜⬜⬜⬜⬜⬜", elem_classes="topButton linear-background"),
tags_button: gr.Button("░░░░, ░░░░, ░░░░", elem_classes="bottomButton linear-background")
}.items()
}
current_item_idx = 0
generated_text = ""
for line in gen_datasets_line_by_line(search_query):
if "I'm sorry" in line:
raise gr.Error("Error: inappropriate content")
if current_item_idx >= MAX_NB_ITEMS_PER_GENERATION_CALL:
return
if line.strip() and line.strip().split(".", 1)[0].isnumeric():
try:
dataset_name, tags = line.strip().split(".", 1)[1].strip(" )").split(" (", 1)
except ValueError:
dataset_name, tags = line.strip().split(".", 1)[1].strip(" )").split(" ", 1)
dataset_name, tags = dataset_name.strip("()[]* "), tags.strip("()[]* ")
generated_text += line
yield {
buttons[2 * current_item_idx]: gr.Button(dataset_name, elem_classes="topButton"),
buttons[2 * current_item_idx + 1]: gr.Button(tags, elem_classes="bottomButton"),
generated_texts_state: (generated_text,),
}
current_item_idx += 1
search_more_datasets_inputs = [search_bar, generated_texts_state]
search_more_datasets_outputs = button_groups + buttons + [generated_texts_state]
def search_more_datasets(search_query, generated_texts):
current_item_idx = initial_item_idx = len(generated_texts) * MAX_NB_ITEMS_PER_GENERATION_CALL
yield {
button_group: gr.Group(elem_classes="buttonsGroup")
for button_group in button_groups[len(generated_texts) * MAX_NB_ITEMS_PER_GENERATION_CALL:(len(generated_texts) + 1) * MAX_NB_ITEMS_PER_GENERATION_CALL]
}
generated_text = ""
for line in gen_datasets_line_by_line(search_query, generated_texts=generated_texts):
if "I'm sorry" in line:
raise gr.Error("Error: inappropriate content")
if current_item_idx - initial_item_idx >= MAX_NB_ITEMS_PER_GENERATION_CALL:
return
if line.strip() and line.strip().split(".", 1)[0].isnumeric():
try:
dataset_name, tags = line.strip().split(".", 1)[1].strip(" )").split(" (", 1)
except ValueError:
dataset_name, tags = line.strip().split(".", 1)[1].strip(" )").split(" ", 1) [0], ""
dataset_name, tags = dataset_name.strip("()[]* "), tags.strip("()[]* ")
generated_text += line
yield {
buttons[2 * current_item_idx]: gr.Button(dataset_name, elem_classes="topButton"),
buttons[2 * current_item_idx + 1]: gr.Button(tags, elem_classes="bottomButton"),
generated_texts_state: (*generated_texts, generated_text),
}
current_item_idx += 1
show_dataset_inputs = [search_bar, *buttons]
show_dataset_outputs = [search_page, dataset_page, dataset_title, dataset_content]
def show_dataset(search_query, *buttons_values, i):
dataset_name, tags = buttons_values[2 * i : 2 * i + 2]
yield {
search_page: gr.Column(visible=False),
dataset_page: gr.Column(visible=True),
dataset_title: f"# {dataset_name}\n\n tags: {tags}\n\n _Note: This is an AI-generated dataset so its content may be inaccurate or false_"
}
for generated_text in gen_dataset_content(search_query=search_query, dataset_name=dataset_name, tags=tags):
yield {dataset_content: generated_text}
def show_search_page():
return gr.Column(visible=True), gr.Column(visible=False)
def generate_full_dataset():
raise gr.Error("Not implemented yet sorry ! Give me some feedbacks in the Community tab in the meantime ;)")
search_bar.submit(search_datasets, inputs=search_datasets_inputs, outputs=search_datasets_outputs)
search_button.click(search_datasets, inputs=search_datasets_inputs, outputs=search_datasets_outputs)
for i, (dataset_name_button, tags_button) in enumerate(batched(buttons, 2)):
dataset_name_button.click(partial(show_dataset, i=i), inputs=show_dataset_inputs, outputs=show_dataset_outputs)
tags_button.click(partial(show_dataset, i=i), inputs=show_dataset_inputs, outputs=show_dataset_outputs)
see_more.click(search_more_datasets, inputs=search_more_datasets_inputs, outputs=search_more_datasets_outputs)
generate_full_dataset_button.click(generate_full_dataset)
back_button.click(show_search_page, inputs=[], outputs=[search_page, dataset_page])
demo.launch()
|