Spaces:
Sleeping
Sleeping
File size: 7,613 Bytes
e93b0ba 43037cf e93b0ba 43037cf e93b0ba 43037cf e93b0ba 43037cf e93b0ba 43037cf e93b0ba 43037cf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 |
from functools import partial
from typing import Iterator
import gradio as gr
from huggingface_hub import InferenceClient
model_id = "microsoft/Phi-3-mini-4k-instruct"
client = InferenceClient(model_id)
GENERATE_DATASET_NAMES_FOR_SEARCH_QUERY = (
"A Machine Learning Practioner is looking for a dataset that matches '{search_query}'. "
"Generate a list of 10 names of quality dataset that don't exist but sound plausible and would "
"be helpful. Feel free to reuse words from the query '{search_query}' to name the datasets. "
"Give each dataset descriptive tags/keywords and use the following format:\n1. DatasetName (tag1, tag2, tag3)"
)
def stream_reponse(msg: str) -> Iterator[str]:
for message in client.chat_completion(
messages=[{"role": "user", "content": msg}],
max_tokens=500,
stream=True,
):
yield message.choices[0].delta.content
def gen_datasets(search_query: str) -> Iterator[str]:
search_query = search_query if search_query.strip() else "topic classification"
generated_text = ""
for token in stream_reponse(GENERATE_DATASET_NAMES_FOR_SEARCH_QUERY.format(search_query=search_query)):
generated_text += token
if generated_text.endswith("\n"):
yield generated_text.strip()
yield generated_text.strip()
print("-----\n\n" + generated_text)
NB_ITEMS_PER_PAGE = 10
default_output = """
1. NewsArticleCollection (BreakingNews, VietnameseNewsTrends, CountrySpecificTopics)
2. ScienceJournalDataset (AstrophysicsTrends, EcologyPatterns, QuantumMechanicsInsights)
3. TechnologyReviewDB (TechInnovationSurges, MobileDevicesAnalysis, CybersecurityBreachStudies)
4. BusinessWeeklyReports (MarketTrends, E-commerceGrowth, CorporateChangeDynamics)
5. HealthResearchArchive (PandemicPatterns, DiseaseOutbreakInferences, WellnessTrends)
6. SportsDataCorpus (ExerciseRoutineShifts, ProfessionalLeagueShifts, InjuryImpactAnalysis)
7. EducationSectorStatistics (OnlineEducationAdoption, CurriculumImpactStudies, TeacherTrainingAmendments)
8. CinemaCritiqueBank (FilmGenreRotation, HollywoodProductionImpacts, GlobalEntertainmentSurveys)
9. CulturalShiftSamples (FoodCuisineEvolution, SocialMediaInfluence, ArtTrendsEvolution)
10. LocalLifestyleSections (UrbanAgricultureInfluence, EcoFriendlyLiving, SustainableTransportationTrends)
""".strip().split("\n")
assert len(default_output) == NB_ITEMS_PER_PAGE
css = """
.datasetButton {
justify-content: start;
justify-content: left;
}
.tags {
font-size: var(--button-small-text-size);
color: var(--body-text-color-subdued);
}
a {
color: var(--body-text-color);
}
.topButton {
justify-content: start;
justify-content: left;
text-align: left;
background: transparent;
box-shadow: none;
padding-bottom: 0;
}
.topButton::before {
content: url("data:image/svg+xml,%3Csvg style='color: rgb(209 213 219)' xmlns='http://www.w3.org/2000/svg' xmlns:xlink='http://www.w3.org/1999/xlink' aria-hidden='true' focusable='false' role='img' width='1em' height='1em' preserveAspectRatio='xMidYMid meet' viewBox='0 0 25 25'%3E%3Cellipse cx='12.5' cy='5' fill='currentColor' fill-opacity='0.25' rx='7.5' ry='2'%3E%3C/ellipse%3E%3Cpath d='M12.5 15C16.6421 15 20 14.1046 20 13V20C20 21.1046 16.6421 22 12.5 22C8.35786 22 5 21.1046 5 20V13C5 14.1046 8.35786 15 12.5 15Z' fill='currentColor' opacity='0.5'%3E%3C/path%3E%3Cpath d='M12.5 7C16.6421 7 20 6.10457 20 5V11.5C20 12.6046 16.6421 13.5 12.5 13.5C8.35786 13.5 5 12.6046 5 11.5V5C5 6.10457 8.35786 7 12.5 7Z' fill='currentColor' opacity='0.5'%3E%3C/path%3E%3Cpath d='M5.23628 12C5.08204 12.1598 5 12.8273 5 13C5 14.1046 8.35786 15 12.5 15C16.6421 15 20 14.1046 20 13C20 12.8273 19.918 12.1598 19.7637 12C18.9311 12.8626 15.9947 13.5 12.5 13.5C9.0053 13.5 6.06886 12.8626 5.23628 12Z' fill='currentColor'%3E%3C/path%3E%3C/svg%3E");
margin-right: .25rem;
margin-left: -.125rem;
margin-top: .25rem;
}
.bottomButton {
justify-content: start;
justify-content: left;
text-align: left;
background: transparent;
box-shadow: none;
font-size: var(--button-small-text-size);
color: var(--body-text-color-subdued);
padding-top: 0;
align-items: baseline;
}
.bottomButton::before {
content: 'tags:\002'
}
.buttonsGroup {
background: transparent;
}
.buttonsGroup:hover {
background: var(--input-background-fill);
}
.buttonsGroup div {
background: transparent;
}
@keyframes placeHolderShimmer{
0%{
background-position: -468px 0
}
100%{
background-position: 468px 0
}
}
.linear-background {
animation-duration: 1s;
animation-fill-mode: forwards;
animation-iteration-count: infinite;
animation-name: placeHolderShimmer;
animation-timing-function: linear;
background-image: linear-gradient(to right, var(--body-text-color-subdued) 8%, #dddddd11 18%, var(--body-text-color-subdued) 33%);
background-size: 1000px 104px;
color: transparent;
background-clip: text;
}
"""
def search_datasets(search_query):
output_values = [
gr.Button("⬜⬜⬜⬜⬜⬜", elem_classes="topButton linear-background"),
gr.Button("░░░░, ░░░░, ░░░░", elem_classes="bottomButton linear-background")
] * NB_ITEMS_PER_PAGE
for generated_text in gen_datasets(search_query):
if "I'm sorry" in generated_text:
raise gr.Error("Error: inappropriate content")
lines = [line for line in generated_text.split("\n") if line and line.split(".", 1)[0].isnumeric()][:NB_ITEMS_PER_PAGE]
for i, line in enumerate(lines):
dataset_name, tags = line.split(".", 1)[1].strip(" )").split(" (", 1)
output_values[2 * i] = gr.Button(dataset_name, elem_classes="topButton")
output_values[2 * i + 1] = gr.Button(tags, elem_classes="bottomButton")
yield output_values
def show_dataset(*buttons_values, i):
dataset_name, tags = buttons_values[2 * i : 2 * i + 2]
return f"{dataset_name=}, {tags=}"
with gr.Blocks(css=css) as demo:
gr.Markdown(
"# 🤗 Infinite Dataset Hub\n\n"
f"_powered by [{model_id}](https://huggingface.co/{model_id})_"
)
with gr.Row():
with gr.Column(scale=4, min_width=0):
pass
with gr.Column(scale=9):
search_bar = gr.Textbox(max_lines=1, placeholder="Search datasets", show_label=False, container=False)
with gr.Column(min_width=64):
search_button = gr.Button("🔍", variant="primary")
with gr.Column(scale=4, min_width=0):
pass
output = gr.Markdown()
with gr.Row():
with gr.Column(scale=4, min_width=0):
pass
with gr.Column(scale=10):
buttons = []
for i in range(10):
line = default_output[i]
dataset_name, tags = line.split(".", 1)[1].strip(" )").split(" (", 1)
with gr.Group(elem_classes="buttonsGroup"):
top = gr.Button(dataset_name, elem_classes="topButton")
bottom = gr.Button(tags, elem_classes="bottomButton")
buttons += [top, bottom]
top.click(partial(show_dataset, i=i), inputs=buttons, outputs=output)
bottom.click(partial(show_dataset, i=i), inputs=buttons, outputs=output)
with gr.Column(scale=4, min_width=0):
pass
search_bar.submit(search_datasets, inputs=search_bar, outputs=buttons)
search_button.click(search_datasets, inputs=search_bar, outputs=buttons)
demo.launch()
|