themanas021 commited on
Commit
1db1818
·
1 Parent(s): 7ecf182

Update ingest.py

Browse files
Files changed (1) hide show
  1. ingest.py +25 -23
ingest.py CHANGED
@@ -1,30 +1,32 @@
1
- import streamlit as st
2
- from langchain.document_loaders import PyPDFLoader
3
- from langchain.text_splitter import RecursiveCharacterTextSplitter
4
- from langchain.embeddings import SentenceTransformerEmbeddings
5
- from langchain.vectorstores import Chroma
6
  from constants import CHROMA_SETTINGS
7
- persist_directory = "db"
8
 
 
9
 
10
  def main():
11
- st.title("PDF Processor")
12
- uploaded_file = st.file_uploader("Upload a PDF file")
13
- if uploaded_file is not None:
14
- st.write("Processing PDF...")
15
- loader = PyPDFLoader(uploaded_file.read())
16
- documents = loader.load()
17
- st.write("Splitting into chunks")
18
- text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=100)
19
- texts = text_splitter.split_documents(documents)
20
- st.write("Loading sentence transformers model")
21
- embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")
22
- st.write("Creating embeddings. This may take some time...")
23
- db = Chroma.from_documents(texts, embeddings, persist_directory=persist_directory, client_settings=CHROMA_SETTINGS)
24
- db.persist()
25
- db = None
26
- st.success("Ingestion complete! You can now run privateGPT.py to query your documents")
 
27
 
 
28
 
29
  if __name__ == "__main__":
30
- main()
 
1
+ from langchain.document_loaders import PyPDFLoader, DirectoryLoader, PDFMinerLoader
2
+ from langchain.text_splitter import RecursiveCharacterTextSplitter
3
+ from langchain.embeddings import SentenceTransformerEmbeddings
4
+ from langchain.vectorstores import Chroma
5
+ import os
6
  from constants import CHROMA_SETTINGS
 
7
 
8
+ persist_directory = "db"
9
 
10
  def main():
11
+ for root, dirs, files in os.walk("docs"):
12
+ for file in files:
13
+ if file.endswith(".pdf"):
14
+ print(file)
15
+ loader = PyPDFLoader(os.path.join(root, file))
16
+ documents = loader.load()
17
+ print("splitting into chunks")
18
+ text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=100)
19
+ texts = text_splitter.split_documents(documents)
20
+ #create embeddings here
21
+ print("Loading sentence transformers model")
22
+ embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")
23
+ #create vector store here
24
+ print(f"Creating embeddings. May take some minutes...")
25
+ db = Chroma.from_documents(texts, embeddings, persist_directory=persist_directory, client_settings=CHROMA_SETTINGS)
26
+ db.persist()
27
+ db=None
28
 
29
+ print(f"Ingestion complete! You can now run privateGPT.py to query your documents")
30
 
31
  if __name__ == "__main__":
32
+ main()